15 research outputs found
Enhancement of cell-specific transgene expression from a Tet-Off regulatory system using a transcriptional amplification strategy in the rat brain
10.1002/jgm.1178Journal of Gene Medicine105583-592JGME
Carotid sinus denervation (CSD) ameliorates renovascular hypertension in adult Wistar rats
The peripheral chemoreflex is known to be hyper-responsive in both spontaneously hypertensive (SHR) and Goldblatt hypertensive (2 kidney 1 clip; 2K1C) rats. We have previously shown that carotid sinus nerve denervation (CSD) reduces arterial blood pressure (ABP) in SHR. Here, we show that CSD ameliorates 2K1C hypertension and reveal potential underlying mechanisms. Adult Wistar rats were instrumented to record ABP via telemetry, then underwent CSD (n = 9) or sham CSD (n = 9) five weeks after renal artery clipping, versus normal Wistar (n = 5). After 21 days renal function was assessed, and tissue collected to assess sympathetic postganglionic intracellular calcium transients ([Ca(2+) ]i ) and immune cell infiltrates. Hypertensive 2K1C rats showed a profound elevation in ABP (Wistar: 98 ± 4 mmHg vs. 2K1C: 147 ± 8 mmHg; P < 0.001), coupled with impairments in renal function and baroreflex sensitivity, increased neuro-inflammatory markers and enhanced [Ca(2+) ]I in stellate neurons (P < 0.05). CSD reduced ABP in 2K1C+CSD rats and prevented the further progressive increase in ABP seen in 2K1C+sham CSD rats, with a between-group difference of 14 ± 2 mmHg by Week 3 (P < 0.01), accompanied by improvements in both baroreflex control and spectral indicators of cardiac sympatho-vagal balance. Furthermore, CSD improved protein and albuminuria, decreased [Ca(2+) ]i evoked responses from stellate neurons, and reduced indicators of brainstem inflammation. In summary, CSD in 2K1C rats reduces the hypertensive burden and improves renal function. This may be mediated by improvements in autonomic balance, functional remodelling of post-ganglionic neurones and reduced inflammation. Our results suggest that the peripheral chemoreflex may be considered as a potential therapeutic target for controlling renovascular hypertension
Global patient outcomes after elective surgery: prospective cohort study in 27 low-, middle- and high-income countries.
BACKGROUND: As global initiatives increase patient access to surgical treatments, there remains a need to understand the adverse effects of surgery and define appropriate levels of perioperative care. METHODS: We designed a prospective international 7-day cohort study of outcomes following elective adult inpatient surgery in 27 countries. The primary outcome was in-hospital complications. Secondary outcomes were death following a complication (failure to rescue) and death in hospital. Process measures were admission to critical care immediately after surgery or to treat a complication and duration of hospital stay. A single definition of critical care was used for all countries. RESULTS: A total of 474 hospitals in 19 high-, 7 middle- and 1 low-income country were included in the primary analysis. Data included 44 814 patients with a median hospital stay of 4 (range 2-7) days. A total of 7508 patients (16.8%) developed one or more postoperative complication and 207 died (0.5%). The overall mortality among patients who developed complications was 2.8%. Mortality following complications ranged from 2.4% for pulmonary embolism to 43.9% for cardiac arrest. A total of 4360 (9.7%) patients were admitted to a critical care unit as routine immediately after surgery, of whom 2198 (50.4%) developed a complication, with 105 (2.4%) deaths. A total of 1233 patients (16.4%) were admitted to a critical care unit to treat complications, with 119 (9.7%) deaths. Despite lower baseline risk, outcomes were similar in low- and middle-income compared with high-income countries. CONCLUSIONS: Poor patient outcomes are common after inpatient surgery. Global initiatives to increase access to surgical treatments should also address the need for safe perioperative care. STUDY REGISTRATION: ISRCTN5181700
Central control of upper airway resistance regulating respiratory airflow in mammals
This article reviews recent studies on the importance of glycine receptors for both the spontaneous and the reflex respiratory modulation of the laryngeal abductors and adductors. Our findings show that strychnine blockade of glycine receptors within the brainstem changes the eupneic three-phase respiratory pattern into two phases. This has major implications for glottal control: (i) the inspiratory glottic abduction and early expiratory adduction were both compromised – a finding mimicked by 5% hypoxia; (ii) closure of the glottis during defensive upper airway reflexes became intermittent and the reflex apnoea reversed to sustained inspiratory discharge. Based on these data, we predict that periods of prolonged hypoxia, such as those that occur during sleep apnoeas, will constrain inspiratory glottic abduction thereby impeding inhalation
Mu opioid receptor activation hyperpolarizes respiratory-controlling Kölliker-Fuse neurons and suppresses post-inspiratory drive
KEY POINTS: In addition to reductions in respiratory rate, opioids also cause aspiration and difficulty swallowing, indicating impairment of the upper airways. The Kölliker–Fuse (KF) maintains upper airway patency and a normal respiratory pattern. In this study, activation of μ opioid receptors in the KF reduced respiratory frequency and tidal volume in anaesthetized rats. Nerve recordings in an in situ preparation showed that activation of μ opioid receptors in the KF eliminated the post‐inspiration phase of the respiratory cycle. In brain slices, μ opioid agonists hyperpolarized a distinct population (61%) of KF neurons by activation of an inwardly rectifying potassium conductance. These results suggest that KF neurons that are hyperpolarized by opioids could contribute to opioid‐induced respiratory disturbances, particularly the impairment of upper airways. ABSTRACT: Opioid‐induced respiratory effects include aspiration and difficulty swallowing, suggesting impairment of the upper airways. The pontine Kölliker–Fuse nucleus (KF) controls upper airway patency and regulates respiration, in particular the inspiratory/expiratory phase transition. Given the importance of the KF in coordinating respiratory pattern, the mechanisms of μ opioid receptor activation in this nucleus were investigated at the systems and cellular level. In anaesthetized, vagi‐intact rats, injection of opioid agonists DAMGO or [Met(5)]enkephalin (ME) into the KF reduced respiratory frequency and amplitude. The μ opioid agonist DAMGO applied directly into the KF of the in situ arterially perfused working heart–brainstem preparation of rat resulted in robust apneusis (lengthened low amplitude inspiration due to loss of post‐inspiratory drive) that was rapidly reversed by the opioid antagonist naloxone. In brain slice preparations, activation of μ opioid receptors on KF neurons hyperpolarized a distinct population (61%) of neurons. As expected, the opioid‐induced hyperpolarization reduced the excitability of the neuron in response to either current injection or local application of glutamate. In voltage‐clamp recordings the outward current produced by the opioid agonist ME was concentration dependent, reversed at the potassium equilibrium potential and was blocked by BaCl(2), characteristics of a G protein‐coupled inwardly rectifying potassium (GIRK) conductance. The clinically used drug morphine produced an outward current in KF neurons with similar potency to morphine‐mediated currents in locus coeruleus brain slice preparations. Thus, the population of KF neurons that are hyperpolarized by μ opioid agonists are likely mediators of the opioid‐induced loss of post‐inspiration and induction of apneusis