132 research outputs found

    Genome Majority Vote Improves Gene Predictions

    Get PDF
    Recent studies have noted extensive inconsistencies in gene start sites among orthologous genes in related microbial genomes. Here we provide the first documented evidence that imposing gene start consistency improves the accuracy of gene start-site prediction. We applied an algorithm using a genome majority vote (GMV) scheme to increase the consistency of gene starts among orthologs. We used a set of validated Escherichia coli genes as a standard to quantify accuracy. Results showed that the GMV algorithm can correct hundreds of gene prediction errors in sets of five or ten genomes while introducing few errors. Using a conservative calculation, we project that GMV would resolve many inconsistencies and errors in publicly available microbial gene maps. Our simple and logical solution provides a notable advance toward accurate gene maps

    Composite GUTs: models and expectations at the LHC

    Get PDF
    We investigate grand unified theories (GUTs) in scenarios where electroweak (EW) symmetry breaking is triggered by a light composite Higgs, arising as a Nambu-Goldstone boson from a strongly interacting sector. The evolution of the standard model (SM) gauge couplings can be predicted at leading order, if the global symmetry of the composite sector is a simple group G that contains the SM gauge group. It was noticed that, if the right-handed top quark is also composite, precision gauge unification can be achieved. We build minimal consistent models for a composite sector with these properties, thus demonstrating how composite GUTs may represent an alternative to supersymmetric GUTs. Taking into account the new contributions to the EW precision parameters, we compute the Higgs effective potential and prove that it realizes consistently EW symmetry breaking with little fine-tuning. The G group structure and the requirement of proton stability determine the nature of the light composite states accompanying the Higgs and the top quark: a coloured triplet scalar and several vector-like fermions with exotic quantum numbers. We analyse the signatures of these composite partners at hadron colliders: distinctive final states contain multiple top and bottom quarks, either alone or accompanied by a heavy stable charged particle, or by missing transverse energy.Comment: 55 pages, 13 figures, final version to be published in JHE

    Power management and control strategies for off-grid hybrid power systems with renewable energies and storage

    Get PDF
    This document is the Accepted Manuscript of the following article: Belkacem Belabbas, Tayeb Allaoui, Mohamed Tadjine, and Mouloud Denai, 'Power management and control strategies for off-grid hybrid power systems with renewable energies and storage', Energy Systems, September 2017. Under embargo. Embargo end date: 19 September 2018. The final publication is available at Springer via https://doi.org/10.1007/s12667-017-0251-y.This paper presents a simulation study of standalone hybrid Distributed Generation Systems (DGS) with Battery Energy Storage System (BESS). The DGS consists of Photovoltaic (PV) panels as Renewable Power Source (RPS), a Diesel Generator (DG) for power buck-up and a BESS to accommodate the surplus of energy, which may be employed in times of poor PV generation. While off-grid DGS represent an efficient and cost-effective energy supply solution particularly to rural and remote areas, fluctuations in voltage and frequency due to load variations, weather conditions (temperature, irradiation) and transmission line short-circuits are major challenges. The paper suggests a hierarchical Power Management (PM) and controller structure to improve the reliability and efficiency of the hybrid DGS. The first layer of the overall control scheme includes a Fuzzy Logic Controller (FLC) to adjust the voltage and frequency at the Point of Common Coupling (PCC) and a Clamping Bridge Circuit (CBC) which regulates the DC bus voltage. A maximum power point tracking (MPPT) controller based on FLC is designed to extract the optimum power from the PV. The second control layer coordinates among PV, DG and BESS to ensure reliable and efficient power supply to the load. MATLAB Simulink is used to implement the overall model of the off-grid DGS and to test the performance of the proposed control scheme which is evaluated in a series of simulations scenarios. The results demonstrated the good performance of the proposed control scheme and effective coordination between the DGS for all the simulation scenarios considered.Peer reviewedFinal Accepted Versio

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    The Ruegeria pomeroyi acuI Gene Has a Role in DMSP Catabolism and Resembles yhdH of E. coli and Other Bacteria in Conferring Resistance to Acrylate

    Get PDF
    The Escherichia coli YhdH polypeptide is in the MDR012 sub-group of medium chain reductase/dehydrogenases, but its biological function was unknown and no phenotypes of YhdHβˆ’ mutants had been described. We found that an E. coli strain with an insertional mutation in yhdH was hyper-sensitive to inhibitory effects of acrylate, and, to a lesser extent, to those of 3-hydroxypropionate. Close homologues of YhdH occur in many Bacterial taxa and at least two animals. The acrylate sensitivity of YhdHβˆ’ mutants was corrected by the corresponding, cloned homologues from several bacteria. One such homologue is acuI, which has a role in acrylate degradation in marine bacteria that catabolise dimethylsulfoniopropionate (DMSP) an abundant anti-stress compound made by marine phytoplankton. The acuI genes of such bacteria are often linked to ddd genes that encode enzymes that cleave DMSP into acrylate plus dimethyl sulfide (DMS), even though these are in different polypeptide families, in unrelated bacteria. Furthermore, most strains of Roseobacters, a clade of abundant marine bacteria, cleave DMSP into acrylate plus DMS, and can also demethylate it, using DMSP demethylase. In most Roseobacters, the corresponding gene, dmdA, lies immediately upstream of acuI and in the model Roseobacter strain Ruegeria pomeroyi DSS-3, dmdA-acuI were co-regulated in response to the co-inducer, acrylate. These observations, together with findings by others that AcuI has acryloyl-CoA reductase activity, lead us to suggest that YdhH/AcuI enzymes protect cells against damaging effects of intracellular acryloyl-CoA, formed endogenously, and/or via catabolising exogenous acrylate. To provide β€œadded protection” for bacteria that form acrylate from DMSP, acuI was recruited into clusters of genes involved in this conversion and, in the case of acuI and dmdA in the Roseobacters, their co-expression may underpin an interaction between the two routes of DMSP catabolism, whereby the acrylate product of DMSP lyases is a co-inducer for the demethylation pathway

    A systematic review and meta-analysis of evidence for correlation between molecular markers of parasite resistance and treatment outcome in falciparum malaria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>An assessment of the correlation between anti-malarial treatment outcome and molecular markers would improve the early detection and monitoring of drug resistance by <it>Plasmodium falciparum</it>. The purpose of this systematic review was to determine the risk of treatment failure associated with specific polymorphisms in the parasite genome or gene copy number.</p> <p>Methods</p> <p>Clinical studies of non-severe malaria reporting on target genetic markers (SNPs for <it>pfmdr1</it>, <it>pfcrt</it>, <it>dhfr</it>, <it>dhps</it>, gene copy number for <it>pfmdr1</it>) providing complete information on inclusion criteria, outcome, follow up and genotyping, were included. Three investigators independently extracted data from articles. Results were stratified by gene, codon, drug and duration of follow-up. For each study and aggregate data the random effect odds ratio (OR) with 95%CIs was estimated and presented as Forest plots. An OR with a lower 95<sup>th </sup>confidence interval > 1 was considered consistent with a failure being associated to a given gene mutation.</p> <p>Results</p> <p>92 studies were eligible among the selection from computerized search, with information on <it>pfcrt </it>(25/159 studies), <it>pfmdr1 </it>(29/236 studies), <it>dhfr </it>(18/373 studies), <it>dhps </it>(20/195 studies). The risk of therapeutic failure after chloroquine was increased by the presence of <it>pfcrt </it>K76T (Day 28, OR = 7.2 [95%CI: 4.5–11.5]), <it>pfmdr1 </it>N86Y was associated with both chloroquine (Day 28, OR = 1.8 [95%CI: 1.3–2.4]) and amodiaquine failures (OR = 5.4 [95%CI: 2.6–11.3, p < 0.001]). For sulphadoxine-pyrimethamine the <it>dhfr </it>single (S108N) (Day 28, OR = 3.5 [95%CI: 1.9–6.3]) and triple mutants (S108N, N51I, C59R) (Day 28, OR = 3.1 [95%CI: 2.0–4.9]) and <it>dhfr</it>-<it>dhps </it>quintuple mutants (Day 28, OR = 5.2 [95%CI: 3.2–8.8]) also increased the risk of treatment failure. Increased <it>pfmdr1 </it>copy number was correlated with treatment failure following mefloquine (OR = 8.6 [95%CI: 3.3–22.9]).</p> <p>Conclusion</p> <p>When applying the selection procedure for comparative analysis, few studies fulfilled all inclusion criteria compared to the large number of papers identified, but heterogeneity was limited. Genetic molecular markers were related to an increased risk of therapeutic failure. Guidelines are discussed and a checklist for further studies is proposed.</p

    Genome Sequence of a Lancefield Group C Streptococcus zooepidemicus Strain Causing Epidemic Nephritis: New Information about an Old Disease

    Get PDF
    Outbreaks of disease attributable to human error or natural causes can provide unique opportunities to gain new information about host-pathogen interactions and new leads for pathogenesis research. Poststreptococcal glomerulonephritis (PSGN), a sequela of infection with pathogenic streptococci, is a common cause of preventable kidney disease worldwide. Although PSGN usually occurs after infection with group A streptococci, organisms of Lancefield group C and G also can be responsible. Despite decades of study, the molecular pathogenesis of PSGN is poorly understood. As a first step toward gaining new information about PSGN pathogenesis, we sequenced the genome of Streptococcus equi subsp. zooepidemicus strain MGCS10565, a group C organism that caused a very large and unusually severe epidemic of nephritis in Brazil. The genome is a circular chromosome of 2,024,171 bp. The genome shares extensive gene content, including many virulence factors, with genetically related group A streptococci, but unexpectedly lacks prophages. The genome contains many apparently foreign genes interspersed around the chromosome, consistent with the presence of a full array of genes required for natural competence. An inordinately large family of genes encodes secreted extracellular collagen-like proteins with multiple integrin-binding motifs. The absence of a gene related to speB rules out the long-held belief that streptococcal pyrogenic exotoxin B or antibodies reacting with it singularly cause PSGN. Many proteins previously implicated in GAS PSGN, such as streptokinase, are either highly divergent in strain MGCS10565 or are not more closely related between these species than to orthologs present in other streptococci that do not commonly cause PSGN. Our analysis provides a comparative genomics framework for renewed appraisal of molecular events underlying APSGN pathogenesis

    Global, regional, and national prevalence and mortality burden of sickle cell disease, 2000-2021: a systematic analysis from the Global Burden of Disease Study 2021

    Get PDF
    BACKGROUND: Previous global analyses, with known underdiagnosis and single cause per death attribution systems, provide only a small insight into the suspected high population health effect of sickle cell disease. Completed as part of the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021, this study delivers a comprehensive global assessment of prevalence of sickle cell disease and mortality burden by age and sex for 204 countries and territories from 2000 to 2021. METHODS: We estimated cause-specific sickle cell disease mortality using standardised GBD approaches, in which each death is assigned to a single underlying cause, to estimate mortality rates from the International Classification of Diseases (ICD)-coded vital registration, surveillance, and verbal autopsy data. In parallel, our goal was to estimate a more accurate account of sickle cell disease health burden using four types of epidemiological data on sickle cell disease: birth incidence, age-specific prevalence, with-condition mortality (total deaths), and excess mortality (excess deaths). Systematic reviews, supplemented with ICD-coded hospital discharge and insurance claims data, informed this modelling approach. We employed DisMod-MR 2.1 to triangulate between these measures-borrowing strength from predictive covariates and across age, time, and geography-and generated internally consistent estimates of incidence, prevalence, and mortality for three distinct genotypes of sickle cell disease: homozygous sickle cell disease and severe sickle cell Ξ²-thalassaemia, sickle-haemoglobin C disease, and mild sickle cell Ξ²-thalassaemia. Summing the three models yielded final estimates of incidence at birth, prevalence by age and sex, and total sickle cell disease mortality, the latter of which was compared directly against cause-specific mortality estimates to evaluate differences in mortality burden assessment and implications for the Sustainable Development Goals (SDGs). FINDINGS: Between 2000 and 2021, national incidence rates of sickle cell disease were relatively stable, but total births of babies with sickle cell disease increased globally by 13Β·7% (95% uncertainty interval 11Β·1-16Β·5), to 515 000 (425 000-614 000), primarily due to population growth in the Caribbean and western and central sub-Saharan Africa. The number of people living with sickle cell disease globally increased by 41Β·4% (38Β·3-44Β·9), from 5Β·46 million (4Β·62-6Β·45) in 2000 to 7Β·74 million (6Β·51-9Β·2) in 2021. We estimated 34 400 (25 000-45 200) cause-specific all-age deaths globally in 2021, but total sickle cell disease mortality burden was nearly 11-times higher at 376 000 (303 000-467 000). In children younger than 5 years, there were 81 100 (58 800-108 000) deaths, ranking total sickle cell disease mortality as 12th (compared to 40th for cause-specific sickle cell disease mortality) across all causes estimated by the GBD in 2021. INTERPRETATION: Our findings show a strikingly high contribution of sickle cell disease to all-cause mortality that is not apparent when each death is assigned to only a single cause. Sickle cell disease mortality burden is highest in children, especially in countries with the greatest under-5 mortality rates. Without comprehensive strategies to address morbidity and mortality associated with sickle cell disease, attainment of SDG 3.1, 3.2, and 3.4 is uncertain. Widespread data gaps and correspondingly high uncertainty in the estimates highlight the urgent need for routine and sustained surveillance efforts, further research to assess the contribution of conditions associated with sickle cell disease, and widespread deployment of evidence-based prevention and treatment for those with sickle cell disease. FUNDING: Bill & Melinda Gates Foundation
    • …
    corecore