380 research outputs found
Three-Level Inverter Performance Using Adaptive Neuro-Fuzzy Based Space Vector Modulation
Space vector modulation is an optimal pulse width modulation technique in variable speed drive application. This paper presents Adaptive Neuro-fuzzy based space vector modulation technique for a three level inverter. It uses uses hybrid learning algorithm (combination of back propagation and least square methods) for training due to this the required training error is obtained with less number of epoches compared to other techniques like Neural, fuzzy etc. The proposed scheme uses the d-axis and q-axis voltages information at the input side and the corrected two-level duty ratios for switching pulses, two-level index are generated as output. The performance measure in-terms of the total harmonic distortion (THD) of inverter line-line voltage has been evaluated with Adaptive Neuro-fuzzy based system is compared with the conventional based SVM method
Fuzzy Intelligent Controller for the Maximum Power Point Tracking of a Photovoltaic Module at Varying Atmospheric Conditions
This paper presents the modeling of a photovoltaic (PV) module at varying atmospheric conditions such as irradiation and temperature. It also includes the maximum power point tracking (MPPT) of the PV module using conventional perturb and observe (P&O) method and fuzzy logic controller. For the performance analysis, the simulation of the PV module along with MPPT controller is done by using MATLAB/Simulink software. The voltage, current and power transitions at varying irradiation and temperature conditions is observed using conventional P&O and fuzzy logic based MPPT controllers. Finally the percentage improvement in power tracking time by fuzzy logic controller against the P&O controller has been evaluated Keywords: Photovoltaic Module, MPPT, P&O method, Fuzzy logic Controller, Irradiatio
Fixed Point and Common Fixed Point Theorems in Complete Metric Spaces
In this paper we established a fixed point and a unique common fixed point theorems in four pair of weakly compatible self-mappings in complete metric spaces satisfy weakly compatibility of contractive modulus. Keywords : Fixed point, Common Fixed point, Complete metric space, Contractive modulus, Weakly compatible maps
Response function analysis of excited-state kinetic energy functional constructed by splitting k-space
Over the past decade, fundamentals of time independent density functional
theory for excited state have been established. However, construction of the
corresponding energy functionals for excited states remains a challenging
problem. We have developed a method for constructing functionals for excited
states by splitting k-space according to the occupation of orbitals. In this
paper we first show the accuracy of kinetic energy functional thus obtained. We
then perform a response function analysis of the kinetic energy functional
proposed by us and show why method of splitting the k-space could be the method
of choice for construction of energy functionals for excited states.Comment: 11 page
III-V-on-silicon multi-frequency lasers
Compact multi-frequency lasers are realized by combining III-V based optical amplifiers with silicon waveguide optical demultiplexers using a heterogeneous integration process based on adhesive wafer bonding. Both devices using arrayed waveguide grating routers as well as devices using ring resonators as the demultiplexer showed lasing with threshold currents between 30 and 40 mA and output powers in the order of a few mW. Laser operation up to 60°C is demonstrated. The small bending radius allowable for the silicon waveguides results in a short cavity length, ensuring stable lasing in a single longitudinal mode, even with relaxed values for the intra-cavity filter bandwidths
The burden of unintentional drowning: Global, regional and national estimates of mortality from the Global Burden of Disease 2017 Study
__Background:__ Drowning is a leading cause of injury-related mortality globally. Unintentional drowning (International Classification of Diseases (ICD) 10 codes W65-74 and ICD9 E910) is one of the 30 mutually exclusive and collectively exhaustive causes of injury-related mortality in the Global Burden of Disease (GBD) study. This study's objective is to describe unintentional drowning using GBD estimates from 1990 to 2017.
__Methods:__ Unintentional drowning from GBD 2017 was estimated for cause-specific mortality and years of life lost (YLLs), age, sex, country, region, Socio-demographic Index (SDI) quintile, and trends from 1990 to 2017. GBD 2017 used standard GBD methods for estimating mortality from drowning.
__Results:__ Globally, unintentional drowning mortality decreased by 44.5% between 1990 and 2017, from 531 956 (uncertainty interval (UI): 484 107 to 572 854) to 295 210 (284 493 to 306 187) deaths. Global age-standardised mortality rates decreased 57.4%, from 9.3 (8.5 to 10.0) in 1990 to 4.0 (3.8 to 4.1) per 100 000 per annum in 2017. Unintentional drowning-associated mortality was generally higher in children, males and in low-SDI to middle-SDI countries. China, India, Pakistan and Bangladesh accounted for 51.2% of all drowning deaths in 2017. Oceania was the region with the highest rate of age-standardised YLLs in 2017, with 45 434 (40 850 to 50 539) YLLs per 100 000 across both sexes.
__Conclusions:__ There has been a decline in global drowning rates. This study shows that the decline was not consistent across countries. The results reinforce the need for continued and improved policy, prevention and research efforts, with a focus on low-and middle-income countries
The upgrade of the ALICE TPC with GEMs and continuous readout
The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio
Meta-analysis of type 2 Diabetes in African Americans Consortium
Type 2 diabetes (T2D) is more prevalent in African Americans than in Europeans. However, little is known about the genetic risk in African Americans despite the recent identification of more than 70 T2D loci primarily by genome-wide association studies (GWAS) in individuals of European ancestry. In order to investigate the genetic architecture of T2D in African Americans, the MEta-analysis of type 2 DIabetes in African Americans (MEDIA) Consortium examined 17 GWAS on T2D comprising 8,284 cases and 15,543 controls in African Americans in stage 1 analysis. Single nucleotide polymorphisms (SNPs) association analysis was conducted in each study under the additive model after adjustment for age, sex, study site, and principal components. Meta-analysis of approximately 2.6 million genotyped and imputed SNPs in all studies was conducted using an inverse variance-weighted fixed effect model. Replications were performed to follow up 21 loci in up to 6,061 cases and 5,483 controls in African Americans, and 8,130 cases and 38,987 controls of European ancestry. We identified three known loci (TCF7L2, HMGA2 and KCNQ1) and two novel loci (HLA-B and INS-IGF2) at genome-wide significance (4.15 × 10(-94)<P<5 × 10(-8), odds ratio (OR) = 1.09 to 1.36). Fine-mapping revealed that 88 of 158 previously identified T2D or glucose homeostasis loci demonstrated nominal to highly significant association (2.2 × 10(-23) < locus-wide P<0.05). These novel and previously identified loci yielded a sibling relative risk of 1.19, explaining 17.5% of the phenotypic variance of T2D on the liability scale in African Americans. Overall, this study identified two novel susceptibility loci for T2D in African Americans. A substantial number of previously reported loci are transferable to African Americans after accounting for linkage disequilibrium, enabling fine mapping of causal variants in trans-ethnic meta-analysis studies.Peer reviewe
ϒ production in p–Pb collisions at √sNN=8.16 TeV
ϒ production in p–Pb interactions is studied at the centre-of-mass energy per nucleon–nucleon collision √sNN = 8.16 TeV with the ALICE detector at the CERN LHC. The measurement is performed reconstructing bottomonium resonances via their dimuon decay channel, in the centre-of-mass rapidity intervals 2.03 < ycms < 3.53 and −4.46 < ycms < −2.96, down to zero transverse momentum. In this work, results on the ϒ(1S) production cross section as a function of rapidity and transverse momentum are presented. The corresponding nuclear modification factor shows a suppression of the ϒ(1S) yields with respect to pp collisions, both at forward and backward rapidity. This suppression is stronger in the low transverse momentum region and shows no significant dependence on the centrality of the interactions. Furthermore, the ϒ(2S) nuclear modification factor is evaluated, suggesting a suppression similar to that of the ϒ(1S). A first measurement of the ϒ(3S) has also been performed. Finally, results are compared with previous ALICE measurements in p–Pb collisions at √sNN = 5.02 TeV and with theoretical calculations.publishedVersio
(Anti-)deuteron production in pp collisions at 1as=13TeV
The study of (anti-)deuteron production in pp collisions has proven to be a powerful tool to investigate the formation mechanism of loosely bound states in high-energy hadronic collisions. In this paper the production of (anti-)deuterons is studied as a function of the charged particle multiplicity in inelastic pp collisions at s=13 TeV using the ALICE experiment. Thanks to the large number of accumulated minimum bias events, it has been possible to measure (anti-)deuteron production in pp collisions up to the same charged particle multiplicity (d Nch/ d \u3b7 3c 26) as measured in p\u2013Pb collisions at similar centre-of-mass energies. Within the uncertainties, the deuteron yield in pp collisions resembles the one in p\u2013Pb interactions, suggesting a common formation mechanism behind the production of light nuclei in hadronic interactions. In this context the measurements are compared with the expectations of coalescence and statistical hadronisation models (SHM)
- …