180 research outputs found
Hydrous Carbonatitic Liquids Drive CO2 Recycling From Subducted Marls and Limestones
This research was supported by the Italian Ministry of Education, University, and Research (MIUR) program PRIN2017 and by the Deep Carbon Observatory (DCO). We are greatly indebted to Andrea Risplendente for careful examination of run charges at the Electron Microprobe.Pelagic limestones are subducted in a variety of subduction zones worldwide. Despite the geochemical relevance
of systems enriched in CaCO3, previous experimental investigations mostly focused on carbonated pelites, with
low Ca/(Ca+Mg+Fe) ratio. We present the compositions and the formation conditions of liquids in the model
system CaO‐Al2O3‐SiO2‐H2O‐CO2 (CASHC), building on phase relationships in the subsystems CHC and
CSHC, where a second critical endpoint was suggested at temperatures as low as 515 °C, and 3.2 GPa. Multianvil
experiments were performed at 4.2 and 6.0 GPa on five bulk compositions at variable Ca/Si/Al ratios. H2O
contents
vary from 5.6 to 21 wt%. Aragonite + kyanite + vapor and minor lawsonite form at 700 °C, replaced by
zoisite/grossular at 800 °C. Between 850 °C and 950 °C, a complex sequence of textural features is observed
upon quenching of a single volatile‐rich liquid phase formed at run conditions. Precipitates include dendritic
CaCO3, silicate glass, and Al‐rich whiskers. The bulk composition of such hydrous carbonatitic liquids is
retrieved by image analysis on X‐ray maps, showing Ca/Si ratio increasing with pressure and temperature.
Hydrous Ca‐carbonatitic liquids are efficient media for scavenging volatiles from subducted crustal material and
for metasomatizing the mantle wedge.Ministry of Education, Universities and Research (MIUR)Deep Carbon Observatory (DCO
Regulation of pentraxin-3 by antioxidants
Peer reviewedPublisher PD
Input of sugarcane post-harvest residues into the soil
Sugarcane (Saccharum spp.) crops provide carbon (C) for soil through straw and root system decomposition. Recently, however, sugarcane producers are considering straw to be removed for electricity or second generation ethanol production. To elucidate the role of straw and root system on the carbon supply into the soil, the biomass inputs from sugarcane straw (tops and dry leaves) and from root system (rhizomes and roots) were quantified, and its contribution to provide C to the soil was estimated. Three trials were carried out in the State of Sao Paulo, Brazil, from 2006 to 2009. All sites were cultivated with the variety SP81 3250 under the green sugarcane harvest. Yearly, post-harvest sugarcane residues (tops, dry leaves, roots and rhizomes) were sampled; weighted and dried for the dry mass (DM) production to be estimated. On average, DM root system production was 4.6 Mg ha-1 year-1 (1.5 Mg C ha-1 year-1) and 11.5 Mg ha-1 year-1 (5.1 Mg C ha-1 year-1) of straw. In plant cane, 35 % of the total sugarcane DM was allocated into the root system, declining to 20 % in the third ratoon. The estimate of potential allocation of sugarcane residues to soil organic C was 1.1 t ha-1 year-1; out of which 33 % was from root system and 67 % from straw. The participation of root system should be higher if soil layer is evaluated, a deeper soil layer, if root exudates are accounted and if the period of higher production of roots is considered
Human Resource Flexibility as a Mediating Variable Between High Performance Work Systems and Performance
Much of the human resource management literature has demonstrated the impact of high performance
work systems (HPWS) on organizational performance. A new generation of studies is
emerging in this literature that recommends the inclusion of mediating variables between HPWS
and organizational performance. The increasing rate of dynamism in competitive environments
suggests that measures of employee adaptability should be included as a mechanism that may
explain the relevance of HPWS to firm competitiveness. On a sample of 226 Spanish firms, the
study’s results confirm that HPWS influences performance through its impact on the firm’s
human resource (HR) flexibility
Quantitative trait locus mapping associated with earliness and fruit weight in tomato
ABSTRACT The flowering time is regarded as an important factor that affects yield in various crops. In order to understand how the molecular basis controlling main components of earliness in tomato (Solanum lycopersicum L.), and to deduce whether the correlation between fruit weight, days to flowering and seed weight, is caused by pleiotropic effects or genetic linkage, a QTLs analysis was carried out using an F2 interspecific population derived from the cross of S. lycopersicum and S. pimpinellifolium. The analysis revealed that most of the components related to earliness were independent due to the absence of phenotypic correlation and lack of co-localization of their QTLs. QTLs affecting the flowering time showed considerable variation over time in values of explained phenotypic variation and average effects, which suggested dominance becomes more evident over time. The path analysis showed that traits such as days to flowering, seed weight, and length of the first leaf had a significant effect on the expression of fruit weight, confirming that their correlations were due to linkage. This result was also confirmed in two genomic regions located on chromosomes 1 and 4, where despite showing high co-localization of QTLs associated to days to flowering, seed weight and fruit weight, the presence and absence of epistasis in dfft1.1 × dftt4.1 and fw1.1 × fw4.1, suggested that the linkage was the main cause of the co-localization
Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET
The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR
Relationship of edge localized mode burst times with divertor flux loop signal phase in JET
A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
- …