817 research outputs found

    The first stages of nanomicelle formation captured in the sevoflurane trimer

    Get PDF
    Producción CientíficaSelf-aggregation of sevoflurane, an inhalable, fluorinated anesthetic, provides a challenge for current state-of-the-art high-resolution techniques due to its large mass and the variety of possible hydrogen bonds between monomers. Here we present the observation of sevoflurane trimer by chirped-pulse Fourier transform microwave spectroscopy, identified through the interplay of experimental and computational methods. The trimer (>600 Da), one of the largest molecular aggregates observed through rotational spectroscopy, does not resemble the binding (C–H···O) motif of the already characterized sevoflurane dimer, instead adapting a new binding configuration created predominantly from 17 CH···F hydrogen bonds that resembles a nanomicellar arrangement. The observation of such a heavy aggregate highlights the potential of rotational spectroscopy to study larger biochemical systems in the limit of spectroscopic congestion but also showcases the challenges ahead as the mass of the system increases.NSF Major Research Instrumentation program (grant CHE0960074)Ministerio de Ciencia, Innovación y Universidades - Fondo Europeo de Desarrollo Regional (grant PGC2018-098561-B-C22

    Broadband Fourier transform rotational spectroscopy for structure determination: The water heptamer

    Get PDF
    Over the recent years chirped-pulse, Fourier-transform microwave (CP-FTMW) spectrometers have chan- ged the scope of rotational spectroscopy. The broad frequency and large dynamic range make possible structural determinations in molecular systems of increasingly larger size from measurements of heavy atom (13C, 15N, 18O) isotopes recorded in natural abundance in the same spectrum as that of the parent isotopic species. The design of a broadband spectrometer operating in the 2–8 GHz frequency range with further improvements in sensitivity is presented. The current CP-FTMW spectrometer performance is benchmarked in the analyses of the rotational spectrum of the water heptamer, (H2O)7, in both 2– 8 GHz and 6–18 GHz frequency ranges. Two isomers of the water heptamer have been observed in a pulsed supersonic molecular expansion. High level ab initio structural searches were performed to pro- vide plausible low-energy candidates which were directly compared with accurate structures provided from broadband rotational spectra. The full substitution structure of the most stable species has been obtained through the analysis of all possible singly-substituted isotopologues (H218O and HDO), and a least-squares rm(1) geometry of the oxygen framework determined from 16 different isotopic species compares with the calculated O–O equilibrium distances at the 0.01 Å level

    Enantioselective Synthesis of Enantioisotopomers with Quantitative Chiral Analysis by Chiral Tag Rotational Spectroscopy

    Get PDF
    Fundamental to the synthesis of enantioenriched chiral molecules is the ability to assign absolute configuration at each stereogenic center, and to determine the enantiomeric excess for each compound. While determination of enantiomeric excess and absolute configuration is often considered routine in many facets of asymmetric synthesis, the same determinations for enantioisotopomers remains a formidable challenge. Here, we report the first highly enantioselective metal-catalyzed synthesis of enantioisotopomers that are chiral by virtue of deuterium substitution along with the first general spectroscopic technique for assignment of the absolute configuration and quantitative determination of the enantiomeric excess of isotopically chiral molecules. Chiral tag rotational spectroscopy uses noncovalent chiral derivatization, which eliminates the possibility of racemization during derivatization, to perform the chiral analysis without the need of reference samples oft he enantioisotopomer

    Laboratory and tentative interstellar detection of trans-methyl formate using the publicly available Green Bank Telescope PRIMOS survey

    Full text link
    The rotational spectrum of the higher-energy trans conformational isomer of methyl formate has been assigned for the first time using several pulsed-jet Fourier transform microwave spectrometers in the 6-60 GHz frequency range. This species has also been sought toward the Sagittarius B2(N) molecular cloud using the publicly available PRIMOS survey from the Green Bank Telescope. We detect seven absorption features in the survey that coincide with laboratory transitions of trans-methyl formate, from which we derive a column density of 3.1 (+2.6, -1.2) \times 10^13 cm-2 and a rotational temperature of 7.6 \pm 1.5 K. This excitation temperature is significantly lower than that of the more stable cis conformer in the same source but is consistent with that of other complex molecular species recently detected in Sgr B2(N). The difference in the rotational temperatures of the two conformers suggests that they have different spatial distributions in this source. As the abundance of trans-methyl formate is far higher than would be expected if the cis and trans conformers are in thermodynamic equilibrium, processes that could preferentially form trans-methyl formate in this region are discussed. We also discuss measurements that could be performed to make this detection more certain. This manuscript demonstrates how publicly available broadband radio astronomical surveys of chemically rich molecular clouds can be used in conjunction with laboratory rotational spectroscopy to search for new molecules in the interstellar medium.Comment: 40 pages, 7 figures, 4 tables; accepted for publication in Ap

    The Role of Non-Covalent Interactions on Cluster Formation: Pentamer, Hexamers and Heptamer of Difluoromethane

    Get PDF
    The role of non-covalent interactions (NCIs) has broadened with the inclusion of new types of interactions and a plethora of weak donor/acceptor partners. This work illustrates the potential of chirped-pulse Fourier transform microwave technique, which has revolutionized the field of rotational spectroscopy. In particular, it has been exploited to reveal the role of NCIs' in the molecular self-aggregation of difluoromethane where a pentamer, two hexamers and a heptamer were detected. The development of a new automated assignment program and a sophisticated computational screening protocol was essential for identifying the homoclusters in conditions of spectral congestion. The major role of dispersion forces leads to less directional interactions and more distorted structures than those found in polar clusters, although a detailed analysis demonstrates that the dominant interaction energy is the pairwise interaction. The tetramer cluster is identified as a structural unit in larger clusters, representing the maximum expression of bond between dimers.We thank MINECO (CTQ2017-89150-R), Basque Government (IT1162-19 and PIBA2018-11), the UPV/EHU (PPG17/10, GIU18/207), CSIC (2018FR0036, LINKA20249), University of Bologna (RFO), Fondazione CARISBO (2018/0353) and NSF (CHE-1903871 and CHE-2018427) for the financial support. C.C thanks MINECO for a Juan de la Cierva contract. L.E. was supported by Marie Curie fellowship PIOF-GA-2012-32840

    Azimuthal Angle Correlations for Rapidity Separated Hadron Pairs in d+Au Collisions at sqrt(s_NN) = 200 GeV

    Get PDF
    We report on two-particle azimuthal angle correlations between charged hadrons at forward/backward (deuteron/gold going direction) rapidity and charged hadrons at mid-rapidity in deuteron-gold (d+Au) and proton-proton (p+p) collisions at sqrt(s_NN) = 200 GeV. Jet structures are observed in the correlations which we quantify in terms of the conditional yield and angular width of away side partners. The kinematic region studied here samples partons in the gold nucleus carrying nucleon momentum fraction x~0.1 to x~0.01. Within this range, we find no x dependence of the jet structure in d+Au collisions.Comment: 330 authors, 6 pages text, 4 figures, no tables. Submitted to Phys. Rev. Lett. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Centrality dependence of charged hadron production in deuteron+gold and nucleon+gold collisions at sqrt(s_NN)=200 GeV

    Full text link
    We present transverse momentum (p_T) spectra of charged hadrons measured in deuteron-gold and nucleon-gold collisions at \sqrts = 200 GeV for four centrality classes. Nucleon-gold collisions were selected by tagging events in which a spectator nucleon was observed in one of two forward rapidity detectors. The spectra and yields were investigated as a function of the number of binary nucleon-nucleon collisions, \nu, suffered by deuteron nucleons. A comparison of charged particle yields to those in p+p collisions show that the yield per nucleon-nucleon collision saturates with \nu for high momentum particles. We also present the charged hadron to neutral pion ratios as a function of p_T.Comment: 330 authors, 15 pages text, 16 figures, 3 tables. Submitted to Phys. Rev. Lett. v2 has minor changes to reflect revisions during review process. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm

    Deuteron and antideuteron production in Au+Au collisions at sqrt(s_NN)=200 GeV

    Get PDF
    The production of deuterons and antideuterons in the transverse momentum range 1.1 < p_T < 4.3 GeV/c at mid-rapidity in Au + Au collisions at sqrt(s_NN)=200 GeV has been studied by the PHENIX experiment at RHIC. A coalescence analysis comparing the deuteron and antideuteron spectra with those of protons and antiprotons, has been performed. The coalescence probability is equal for both deuterons and antideuterons and increases as a function of p_T, which is consistent with an expanding collision zone. Comparing (anti)proton yields p_bar/p = 0.73 +/- 0.01, with (anti)deuteron yields: d_bar/d = 0.47 +/- 0.03, we estimate that n_bar/n = 0.64 +/- 0.04.Comment: 326 authors, 6 pages text, 5 figures, 1 Table. Submitted to PRL. Plain text data tables for the points plotted in figures for this and previous PHENIX publications are (or will be) publicly available at http://www.phenix.bnl.gov/papers.htm
    corecore