337 research outputs found

    Convective heat transfer in airflow through a duct with wall thermal radiation

    Get PDF
    This paper presents a numerical investigation on airflow through a heated horizontal rectangular duct wherein the model considers the combined modes of natural and forced convection heat transfer and the thermal radiation from duct walls. The duct periphery is differentially heated with known temperature profiles imposed on the two opposite vertical sidewalls while the other two walls are treated as adiabatic. The air enters into the duct hydrodynamically fully developed and flows steadily under laminar conditions undergoing thermal development within the duct. Considering several temperature profiles on the two vertical sidewalls, the numerical simulation generates the heat transfer rates and associated fluid flow patterns in the duct for a range of airflow rates, duct aspect ratios and surface emissivity. The variation of local Nusselt number at duct walls and the fluid flow patterns are critically examined to identify thermal instabilities and the significance of wall thermal radiation effects on the overall heat transfer rates

    A Very High-Order Accurate Staggered Finite Volume Scheme for the Stationary Incompressible Navier–Stokes and Euler Equations on Unstructured Meshes

    Get PDF
    International audienceWe propose a sixth-order staggered finite volume scheme based on polynomial reconstructions to achieve high accurate numerical solutions for the incompressible Navier-Stokes and Euler equations. The scheme is equipped with a fixed-point algorithm with solution relaxation to speed-up the convergence and reduce the computation time. Numerical tests are provided to assess the effectiveness of the method to achieve up to sixth-order con-2 Ricardo Costa et al. vergence rates. Simulations for the benchmark lid-driven cavity problem are also provided to highlight the benefit of the proposed high-order scheme

    Coupling of CFD and semiempirical methods for designing three-phase condensate separator: case study and experimental validation

    Get PDF
    This study presents an approach to determine the dimensions of three-phase separators. First, we designed different vessel configurations based on the fluid properties of an Iranian gas condensate field. We then used a comprehensive computational fluid dynamic (CFD) method for analyzing the three-phase separation phenomena. For simulation purposes, the combined volume of fluid–discrete particle method (DPM) approach was used. The discrete random walk (DRW) model was used to include the effect of arbitrary particle movement due to variations caused by turbulence. In addition, the comparison of experimental and simulated results was generated using different turbulence models, i.e., standard k–ε, standard k–ω, and Reynolds stress model. The results of numerical calculations in terms of fluid profiles, separation performance and DPM particle behavior were used to choose the optimum vessel configuration. No difference between the dimensions of the optimum vessel and the existing separator was found. Also, simulation data were compared with experimental data pertaining to a similar existing separator. A reasonable agreement between the results of numerical calculation and experimental data was observed. These results showed that the used CFD model is well capable of investigating the performance of a three-phase separator

    Pore-scale numerical investigation of pressure drop behaviour across open-cell metal foams

    Get PDF
    The development and validation of a grid-based pore-scale numerical modelling methodology applied to five different commercial metal foam samples is described. The 3-D digital representation of the foam geometry was obtained by the use of X-ray microcomputer tomography scans, and macroscopic properties such as porosity, specific surface and pore size distribution are directly calculated from tomographic data. Pressure drop measurements were performed on all the samples under a wide range of flow velocities, with focus on the turbulent flow regime. Airflow pore-scale simulations were carried out solving the continuity and Navier–Stokes equations using a commercial finite volume code. The feasibility of using Reynolds-averaged Navier–Stokes models to account for the turbulence within the pore space was evaluated. Macroscopic transport quantities are calculated from the pore-scale simulations by averaging. Permeability and Forchheimer coefficient values are obtained from the pressure gradient data for both experiments and simulations and used for validation. Results have shown that viscous losses are practically negligible under the conditions investigated and pressure losses are dominated by inertial effects. Simulations performed on samples with varying thickness in the flow direction showed the pressure gradient to be affected by the sample thickness. However, as the thickness increased, the pressure gradient tended towards an asymptotic value

    Computational Fluid Dynamics of Catalytic Reactors

    Get PDF
    Today, the challenge in chemical and material synthesis is not only the development of new catalysts and supports to synthesize a desired product, but also the understanding of the interaction of the catalyst with the surrounding flow field. Computational Fluid Dynamics or CFD is the analysis of fluid flow, heat and mass transfer and chemical reactions by means of computer-based numerical simulations. CFD has matured into a powerful tool with a wide range of applications in industry and academia. From a reaction engineering perspective, main advantages are reduction of time and costs for reactor design and optimization, and the ability to study systems where experiments can hardly be performed, e.g., hazardous conditions or beyond normal operation limits. However, the simulation results will always remain a reflection of the uncertainty in the underlying models and physicochemical parameters so that in general a careful experimental validation is required. This chapter introduces the application of CFD simulations in heterogeneous catalysis. Catalytic reactors can be classified by the geometrical design of the catalyst material (e.g. monoliths, particles, pellets, washcoats). Approaches for modeling and numerical simulation of the various catalyst types are presented. Focus is put on the principal concepts for coupling the physical and chemical processes on different levels of details, and on illustrative applications. Models for surface reaction kinetics and turbulence are described and an overview on available numerical methods and computational tools is provided
    • …
    corecore