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A sixth-order accurate staggered finite volume scheme for

the incompressible Navier-Stokes and Euler equations on

unstructured meshes

Ricardo Costa · Stéphane Clain · Gaspar J.

Machado · Raphaël Loubère

Abstract We propose a sixth-order staggered finite volume scheme based on polynomial

reconstructions to achieve high accurate numerical solutions for the incompressible Navier-

Stokes and Euler equations. The scheme is equipped with a fixed-point algorithm with so-

lution relaxation to speed-up the convergence and reduce the computation time. Numerical

tests are provided to assess the effectiveness of the method to achieve up to sixth-order con-
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vergence rates. Simulations for the benchmark lid-driven cavity problem are also provided

to highlight the benefit of the proposed high-order scheme.

Keywords Finite volume method · High-order scheme · Polynomial reconstruction ·

Navier-Stokes equations · Euler equations · Fixed-point algorithm

1 Introduction

Very high-order accurate schemes, that is, schemes where is achieved a strictly higher order

than the usual second-order of approximation, for incompressible fluid flow have been first

designed using the compact finite difference method on structured grids [19,1,26,23]. On

the other hand, following the pioneer work of Patankar [30], the finite volume method turns

out to be an efficient way to solve the Navier-Stokes equations for incompressible flow.

Nevertheless, most of the finite volume schemes proposed in the literature [5,15,7,17,22,

38] are based on affine reconstructions of the solution which provides, at most, an effective

second-order approximation for the velocity and a first-order approximation for the pressure,

either on structured or unstructured meshes. More recently, a new class of very-high order

schemes combining a compact scheme and a finite volume method were developed for the

Navier-Stokes equations [24,31,4,20,28] using staggered grids [32,37,22] or the collocated

method, where the pressure-velocity coupling is enforced by the Rhie-Chow strategy [34,

35,14].

Up to our knowledge, there exist very few pure finite volume schemes which achieve a

very high-order approximation for the incompressible Stokes and Navier-Stokes equations.

We mean by “pure”, the fact that the Padé technique is not used to provide accurate ap-

proximations (pointwise or mean-values) of the unknowns functions and their derivatives,

but only polynomial reconstructions are used. The pure version easily handles unstructured
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meshes while the compact method turns out to be cumbersome when dealing with unstruc-

tured grids [28,16] and a loss of the optimal order of accuracy is also reported. Recently,

pure high-order finite volume methods have been proposed in [10,33,27], based on the Mov-

ing Least Square method [25] for obtaining the local reconstructions. This approach enables

to achieve up to an effective fourth-order of approximation and handles complex meshes.

We also mention the contribution [29,21] for compressible flows but such an approach does

not fit with the incompressible situation since the duality div-grad does not exist in that case.

We propose in the present paper another pure finite volume scheme, based on specific

polynomial reconstructions, to provide sixth-order approximations for the incompressible

Navier-Stokes equations and the Euler system. In [11], a new class of polynomial recon-

structions have been designed to provide very accurate approximations of the solution for

the convection-diffusion problem. An extension for the three-dimensional case with curved

boundaries [6] has been developed while the non-stationary problem with time-dependent

Dirichlet or Neumann conditions has been studied in [8]. The main ingredient is a differenti-

ated polynomial reconstruction depending on the operator we are dealing with. For the con-

vective part, conservative reconstruction deriving from the one used in hyperbolic problems

[12] is considered. For the diffusion term, the non-conservative reconstruction associated

to the interface between two cells is desirable to avoid the odd-even solution decoupling

problem. At last, the treatment of the Dirichlet condition on polygonal or curved boundary

requires a specific form of the conservative reconstruction associated to the edge or face (for

2D and 3D problems, respectively) on the boundary. More recently, the polynomial recon-

struction machinery was adapted for the Stokes problem [9] for staggered unstructured grids

using the primal mesh for the pressure and the diamond mesh for the velocity. The new poly-

nomial reconstructions which have been proposed provide a sixth-order of approximation

while no checkerboard pressure solutions are reported. In this work, a coupled approach is
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adopted where the pressure and the velocity are treated as a single vectorial unknown (as

such no projection or segregated methods are needed).

The objective of the present paper is twofold. On the one hand, we aim to extend the

resolution of the Stokes problem to the nonlinear Navier-Stokes equations and, on the other

hand, to provide a robust enough method to tackle the incompressible Euler case, namely

taking the viscosity equals to zero. As in the convection-diffusion case, different polyno-

mial reconstructions have to be designed in order to specifically address the operators where

they are used. Roughly speaking, conservative reconstruction is dedicated for the convec-

tion operator and the pressure whereas the viscous term is discretized with non-conservative

polynomial functions. The structure of the paper is the following. The second section deals

with the linearization of the Navier-Stokes problem and presents the generic finite volume

method. We detail all the specific reconstructions we use to provide a very accurate dis-

cretization in section three while section four is dedicated to the fixed-point algorithm. The

fifth section presents the numerical simulations we have carried out to prove the effective-

ness of the method. Accuracy and robustness as well as solving the incompressible Euler

problem are the main issues we address in this section. The lid-driven square cavity prob-

lem is considered in section six and the paper ends with a conclusion and some perspectives.

2 Formulation and finite volume discretization

Let Ω be an open bounded polygonal domain of R2 with boundary ∂Ω and the outward unit

normal vector n ≡ n(x) at x = (x1,x2). We seek the velocity field function U = (U1,U2) ≡

(U1(x),U2(x)) and the pressure function P ≡ P(x), which correspond to the solution of the

isothermal steady-state flow of an incompressible Newtonian fluid governed by the steady-
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state Navier-Stokes equations

∇ ·
(

U⊗U−ν∇U +
1
ρ

PI
)
= g, in Ω , (1)

and the incompressibility constraint given by

∇ ·U = 0, in Ω , (2)

where constants ν and ρ stand for the kinematic viscosity and the density, respectively,

function g = (g1,g2) ≡ (g1(x),g2(x)) stands for the body accelerations per unit volume

acting on the continuum, and I stands for the identity matrix in R2×2. Tensor ∇U is defined

as [∇U ]αβ = ∂Uα/∂xβ , α,β = 1,2, while operator ⊗ stands for the tensor product, namely

[U⊗U ]αβ =UαUβ . Notice that we do not introduce the non-dimensional system at this stage

since we shall also deal with the Euler system i.e. setting ν = 0. The system of equations (1-

2) is completed with the Dirichlet boundary condition

U =UD, on ∂Ω , (3)

where UD = (U1,D,U2,D) ≡ (U1,D(x),U2,D(x)) satisfies the divergence-free compatibility

condition ∫
∂Ω

UD ·n ds = 0.

All the functions are assumed to be regular (at least C2) in the appropriate domain.
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2.1 Linearization

In order to numerically solve the Navier-Stokes problem, a linearized formulation is de-

signed. Let us consider the field function Λ = (Λ1,Λ2) ≡ (Λ1(x),Λ2(x)), which stands for

a guess of the velocity. We consider now the linearized system (also known as the Oseen

equation)

∇ ·
(

U⊗Λ −ν∇U +
1
ρ

PI
)
= g, in Ω , (4)

∇ ·U = 0, in Ω , (5)

with the Dirichlet boundary condition (3).

2.2 Primal and diamond meshes

To deal with staggered grids, we introduce the primal and diamond meshes used for the

pressure and the velocity, respectively (see Fig. 1).

Pi Uβ ,k

ci

ck

Fig. 1 Primal cells (solid lines) and diamond cells (dashed lines).
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The primal mesh of Ω , that we denote by M , is a partition of Ω into I non-overlapping

without gap convex polygonal cells ci, i∈CM = {1, . . . , I}. We adopt the following conven-

tions (see Fig. 2, left):

– for any cell ci, i ∈ CM , we denote by ∂ci its boundary and by |ci| its area; the reference

cell point is denoted by mi which can be any point in ci (in the present work we shall

consider the centroid);

– two cells ci and c j share a common edge ei j whose length is denoted by |ei j| and ni j =

(n1,i j,n2,i j) is the unit normal vector to ei j outward to ci, i.e. ni j = −n ji; the reference

edge point is mi j which can be any point in ei j (in the present work we consider the

midpoint); if an edge of ci belongs to the boundary, the index j is tagged by the letter D;

– for any cell ci, i ∈ CM , we associate the index set ν(i) ⊂ {1, . . . , I} ∪ {D} such that

j ∈ ν(i) if ei j is a common edge of cells ci and c j or with the boundary if j = D.

eiD
∂Ω

ei j

qi j,rqiD,r

mi

m jniD ni j

ci

c j

ekD
∂Ω

ek`qkD,r

qk`,r

mk

m`

nkD

nk`

ck

c`

Fig. 2 Notation for the primal mesh (left) and for the diamond mesh (right).

The diamond mesh D derives from the primal mesh M and is constituted of K non-

overlapping diamond-shape cells (which degenerate to triangles in the boundary) ck, k ∈

CD = {I+1, . . . , I+K}. Indeed, for each inner primal edge ei j corresponds a unique cell of

the diamond mesh defined by the reference points mi and m j and the vertices of the edge (the

diamond cell associated to the boundary edge eiD is defined by the reference point mi and the

vertices of the edge). The notation for the diamond mesh follows the notation introduced for
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the primal mesh where we substitute the index i ∈ CM with k ∈ CD and the index j ∈ ν(i)

with ` ∈ ν(k) (see Fig. 2, right). In particular mk is any point in ck and mk` is any point in

ek`. Likewise, for the diamond mesh those are the centroid and the midpoint, respectively.

To define the association between diamond cells and primal edges, we introduce the cor-

respondence operator πD such that for given arguments (i, j), i∈CM , j ∈ ν(i), we associate

the corresponding diamond cell index k = πD (i, j)∈CD . In the same way, for each diamond

edge, we introduce the correspondence operator πM such that for given arguments (k, `),

k ∈ CD , ` ∈ ν(k), we associate the corresponding primal cell index i = πM (k, `) ∈ CM .

Numerical integrations on the edges are performed with Gaussian quadrature rule where

for the primal edges ei j, i ∈ CM , j ∈ ν(i), we denote by qi j,r, r = 1, . . . ,R, the associated

Gauss points and for the diamond edges ek`, k ∈ CD , ` ∈ ν(k), we denote by qk`,r, r =

1, . . . ,R, the corresponding Gauss points, both sets with weights ζr, r = 1, . . . ,R.

2.3 Generic finite volume scheme

Integrating equation (4) over each diamond cell ck, k∈CD , and then applying the divergence

theorem, provide the conservative law over the cell

∫
∂ck

(
U⊗Λ −ν∇U +

1
ρ

PI
)
·n ds =

∫
ck

g dx.

We rewrite the expression under the scalar form as

∫
∂ck

(
Uβ (Λ ·n)−ν∇Uβ ·n+

1
ρ

Pnβ

)
ds =

∫
ck

gβ dx, β = 1,2.
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Considering the Gaussian quadrature with R points, i.e. of order 2R, for the line integrals,

we get the residual expression

∑
`∈ν(k)

|ek`|
[

R

∑
r=1

ζr(F⊗β ,k`,r +FU
β ,k`,r +FP

β ,k`,r)

]
−|ck|gβ ,k = O(h2R

k ), β = 1,2, (6)

with the physical fluxes given by

F⊗β ,k`,r =Uβ (qk`,r)(Λ(qk`,r) ·nk`), FU
β ,k`,r =−ν∇Uβ (qk`,r) ·nk`

FP
β ,k`,r =

1
ρ

P(qk`,r)nβ ,k`,

(7)

with hk = max`∈ν(k) |ek`|, and gβ ,k an approximation of order 2R of the mean value of gβ

over cell ck. If cell ck is not triangular, we split it into sub-triangles which share the cell

centroid as a common vertex and apply the quadrature rule on each sub-triangle as in [13].

In the same way, we integrate equation (5) over each primal cell ci, i∈CM , and applying

again the divergence theorem, we get

∫
∂ci

U ·n ds = 0.

Considering again Gaussian quadrature rule with R points for the line integrals, we get the

residual expression

∑
j∈ν(i)

|ei j|
R

∑
r=1

ζr F∇
i j,r = O(h2R

i ), (8)

with and hi = max j∈ν(i) |ei j| and the physical flux given by

F∇
i j,r =U(qi j,r) ·ni j. (9)
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3 Polynomial reconstructions and high-order scheme

Polynomial reconstruction, initially introduced in [2,3] for hyperbolic problems, is the fun-

damental tool to provide accurate local representations of the underlying solution and pro-

vide high-order approximation of the flux in the finite volume context. In [11] a methodology

was proposed for the scalar convection-diffusion equation where very accurate approxima-

tions of the gradient fluxes is achieved. The method is based on different types of polynomial

reconstructions, namely the conservative and the non-conservative ones, defined in the cells

or on the edges. The same methodology was adapted for the bidimensional Stokes prob-

lem in [9] using a staggered discretization with polynomial reconstructions in the primal

mesh for the pressure and in the associated diamond mesh for the velocity. We adapt such

methodology to the Navier-Stokes and Euler systems for incompressible flows.

3.1 Stencils

A stencil is a collection of cells situated in the vicinity of a reference geometrical entity,

namely an edge or a cell, where the number of elements of the stencil shall depend on the

degree d of the polynomial function we intend to construct. A polynomial reconstruction of

degree d requires nd = (d + 1)(d + 2)/2 coefficients. In practice, the stencil is constituted

of the Nd closest cells to each geometrical entity in the respective mesh, with Nd ≥ nd (we

usually consider Nd ≈ 1.5nd for the sake of robustness). In the present paper, we associate

for each primal cell ci, i ∈ CM , diamond cell ck, k ∈ CD , and diamond edge ek`, k ∈ CM ,

` ∈ ν(k), the stencils Si, consisting of indices of neighbor primal cells, and Sk and Sk`,

consisting of indices of neighbor diamond cells, respectively.
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3.2 Polynomial reconstruction

Let us consider a generic real-valued function ψ defined in Ω . To compute polynomial

reconstructions based on the data of the associated stencil, we assume that we know the

approximations of the mean value of ψ over the primal cells and the diamond cells, given

by

ψi ≈
1
|ci|

∫
ci

ψ dx, i ∈ CM , ψk ≈
1
|ck|

∫
ck

ψ dx, k ∈ CD .

In what follows we use the usual conventions α = (α1,α2) with |α| = α1 +α2 and

xα = xα1
1 xα2

2 .

3.2.1 Conservative reconstruction for primal and diamond cells

For each primal cell ci, i ∈ CM , the local polynomial approximation of degree d of the

underlying solution ψ is defined as

ψψψ i(x) = ψi + ∑
1≤|α|≤d

Rα
i [(x−mi)

α −Mα
i ] ,

where vector Ri = (Rα
i )1≤|α|≤d gathers the unknown polynomial coefficients, and Mα

i =

1
|ci|
∫

ci
(x−mi)

α dx in order to guarantee the conservation property

1
|ci|

∫
ci

ψψψ i(x) dx = ψi.

For a given stencil Si, we consider the quadratic functional

Ei(Ri) = ∑
q∈Si

[
1
|cq|

∫
cq

ψψψ i(x) dx−ψq

]2

. (10)
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We denote by R̂i the unique vector which minimizes quadratic functional (10) and we de-

fined by ψ̂ψψ i(x) the polynomial which corresponds to the best approximation in the least

squares sense. A similar procedure is carried out when dealing with diamond cell ck, k∈CD .

3.2.2 Non-conservative reconstruction for inner diamond edges

For each inner diamond edge ek`, k ∈ CD , ` ∈ ν(k), ` 6= D, the local polynomial approxima-

tion of degree d of the underlying function ψ is defined as

ψψψk`(x) = ∑
0≤|α|≤d

Rα
k`(x−mk`)

α ,

where vector Rk` = (Rα
k`)0≤|α|≤d gathers the unknown polynomial coefficients (notice that

in this case |α| starts with 0 since no conservation property is required). For a given stencil

Sk` with #Sk` elements and vector ωk` = (ωk`,q)q=1,...,#Sk` , ωk`,q being the positive weights

of the reconstruction, we consider the quadratic functional

Ek`(Rk`) = ∑
q∈Sk`

ωk`,q

[
1
|cq|

∫
cq

ψψψk`(x) dx−ψq

]2

. (11)

We denote by R̃k` the unique vector which minimizes the quadratic functional (11) and we

define by ψ̃ψψk`(x) the polynomial which corresponds to the best approximation in the least

squares sense.

Remark 1 Introduction of weights is of crucial importance to provide stability. One has to

set larger values for the adjacent cells of the edge as shown in [11].

3.2.3 Conservative reconstruction for boundary diamond edges

We treat the boundary diamond edges in a particular way in order to take into account the

prescribed Dirichlet boundary condition. For each boundary diamond edge ekD, k ∈ CD , the
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local polynomial approximation of degree d of the underlying function ψ is defined as

ψψψkD(x) = ψkD + ∑
1≤|α|≤d

Rα
kD [(x−mkD)

α −Mα
kD] ,

where vector RkD = (Rα
kD)1≤|α|≤d gathers the unknown polynomial coefficients, ψkD is an

approximation of order 2R of the mean value of function ψD, a generic real-valued function

defined on ∂Ω , over the diamond boundary edge ekD, and Mα
kD = 1

|ekD|
∫

ekD
(x−mkD)

α dx in

order to guarantee the conservation property

1
|ekD|

∫
ekD

ψψψkD(x) ds = ψkD.

For a given stencil SkD, we consider the quadratic functional

EkD(RkD) = ∑
q∈SkD

ωkD,q

[
1
|cq|

∫
cq

ψψψkD(x) dx−ψq

]2

, (12)

where ωkD = (ωkD,q)q=1,...,#SiD gather the positive weights of the reconstruction ωiD,q.

We denote by R̂kD the unique vector which minimizes the quadratic functional (12) and

we define by ψ̂ψψkD(x) the polynomial which corresponds to the best approximation in the

least squares sense. The previous remark is also valid for this reconstruction.

3.3 Application of the polynomial reconstruction to the Navier-Stokes problem

We now introduce the polynomial reconstructions we shall use for U , Λ , and P to compute

high-order approximations of the physical fluxes (notice that these variables require several

kinds of reconstruction depending on their action in the equation). To this end, we assume

that we know approximations to the mean values of functions U1, U2, Λ1, and Λ2 at the
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diamond cells

Uβ ,k ≈
1
|ck|

∫
ck

Uβ dx, Λβ ,k ≈
1
|ck|

∫
ck

Λβ dx, β = 1,2,

and of function P at the primal cells

Pi ≈
1
|ci|

∫
ci

P dx,

that we gather in vectors ΦU =(U1,k,U2,k)k=I+1,...,I+K ∈R2K , ΦΛ =(Λ1,k,Λ2,k)k=I+1,...,I+K ∈

R2K , and ΦP = (Pi)i=1,...,I ∈ RI . We this data at hand, we prescribe:

– for diamond cell ck, k∈CD , the conservative polynomial reconstructions ÛUUk =(ÛUU1,k,ÛUU2,k)

taking the data in ΦU and Λ̂ΛΛ k = (Λ̂ΛΛ 1,k,Λ̂ΛΛ 2,k) taking the data in ΦΛ as given in sec-

tion 3.2.1;

– for inner diamond edge ek`, k ∈ CD , ` ∈ ν(k), ` 6= D, the non-conservative polynomial

reconstructions ŨUUk` = (ŨUU1,k`,ŨUU2,k`) taking the data in ΦU and Λ̃ΛΛ k` = (Λ̃ΛΛ 1,k`,Λ̃ΛΛ 2,k`) tak-

ing the data in ΦΛ as given in section 3.2.2;

– for boundary diamond edge ekD, the conservative polynomial reconstruction ÛUUkD =

(ÛUU1,kD,ÛUU2,kD) taking the data in ΦU and the boundary condition, and Λ̃ΛΛ kD =(Λ̃ΛΛ 1,kD,Λ̃ΛΛ 2,kD)

taking the data in ΦΛ as given in section 3.2.3;

– for primal cell ci, i ∈ CM , the conservative polynomial reconstruction P̂PPi taking the data

in ΦP as given in section 3.2.1.

In Table 1 we summarize all types of polynomial reconstructions we prescribe for each

primal or diamond cell or edge. Notice that on the boundary edge ekD, we do not use the

conservative reconstruction for Λ .
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Table 1 Polynomial reconstructions for U , Λ , and P.

ck ek` ekD ci

U ÛUUk = (ÛUU1,k,ÛUU2,k) ŨUUk` = (ŨUU1,k`,ŨUU2,k`) ÛUUkD = (ÛUU1,kD,ÛUU2,kD) —

Λ Λ̂ΛΛ k = (Λ̂ΛΛ 1,k,Λ̂ΛΛ 2,k) Λ̃ΛΛ k` = (Λ̃ΛΛ 1,k`,Λ̃ΛΛ 2,k`) Λ̃ΛΛ kD = (Λ̃ΛΛ 1,kD,Λ̃ΛΛ 2,kD) —

P — — — P̂PPi

3.4 Flux evaluation

High-order approximations to the physical fluxes (7) are designed with the help of the poly-

nomial reconstructions presented in the precious section.

3.4.1 Computation of the numerical fluxes

Now, assume that approximations Λk`,r are known at each quadrature point qk`,r, k ∈ CD ,

` ∈ ν(k), r = 1, . . . ,R. We define the following fluxes:

– for an inner diamond edge ek`, the physical fluxes (7) at the quadrature point qk`,r are

approximated by

F⊗
β ,k`,r =


ÛUUβ ,k(qk`,r)(Λk`,r ·nk`) if Λk`,r ·nk` ≥ 0,

ÛUUβ ,`(qk`,r)(Λk`,r ·nk`) otherwise,

FU
β ,k`,r =−ν∇ŨUUβ ,k`(qk`,r) ·nk`, F P

β ,k`,r =
1
ρ

P̂PPi(qk`,r)nβ ,k`,

respectively, with β = 1,2 and the correspondence i = πM (k, `);
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– for a boundary diamond edge ekD, the physical fluxes (7) at the quadrature point qkD,r

are approximated by

F⊗
β ,kD,r =


ÛUUβ ,k(qkD,r)(ΛkD,r ·nkD) if ΛkD,r ·nkD ≥ 0,

Uβ ,D(qkD,r)(ΛkD,r ·nkD) otherwise,

FU
β ,kD,r =−ν∇ÛUUβ ,kD(qkD,r) ·nkD, F P

β ,kD,r =
1
ρ

P̂PPi(qkD,r)nβ ,kD,

respectively, with β = 1,2 and the correspondence i = πM (k,D);

– for an inner primal edge ei j, the physical flux (9) at the quadrature point qi j,r is approx-

imated by ÛUUk(qi j,r) ·ni j, with the correspondence k = πD (i, j);

– for a boundary primal edge eiD the physical flux (9) at the quadrature point qiD,r is

approximated by UD(qiD,r) ·niD.

3.4.2 Computation of Λk`,r

To compute the approximations Λk`,r at each quadrature point of each diamond edge, two

scenarios are considered, namely, using a centred scheme and using upwind scheme that we

will compare numerically. For the former scenario we set Λk`,r = Λ̃ΛΛ k`(qk`,r) while for the

latter we set for inner diamond and boundary diamond edges, respectively,

Λk`,r =


Λ̂ΛΛ k(qk`,r) if Λ̃ΛΛ k`(qk`,r) ·nk` ≥ 0,

Λ̂ΛΛ `(qk`,r) otherwise,

and ΛkD,r =


Λ̂ΛΛ k(qkD,r) if Λ̃ΛΛ kD(qkD,r) ·nkD ≥ 0,

Λ̃ΛΛ kD(qkD,r) otherwise.

Remark 2 We highlight that the Dirichlet boundary conditions are not used to compute Λk`,r.

Indeed, we report that the introduction of boundary condition in the guess velocity gives rise
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of oscillations and prevent the iterative algorithm from converging. We shall present some

numerical tests in order to emphasize such a problem.

4 Residual scheme and fixed-point algorithm

In this section let us rewrite the finite volume scheme in the residual form and introduce the

fixed-point algorithm associated to the Navier-Stokes problem.

4.1 Residual operators for the linearized problem

For any vectors Φ = (ΦU ,ΦP)∈R2K+I and Ψ =ΦΛ ∈R2K we define the residual operators

for the diamond mesh CD, as

G NS
β ,k (Φ ;Ψ) = ∑

`∈ν(k)
|ek`|

[
R

∑
r=1

ζr

(
F⊗

β ,k`,r +FU
β ,k`,r +F P

β ,k`,r

)]
−|ck|gβ ,k, β = 1,2,

G NS(Φ ;Ψ) =
(
G NS

1,k (Φ ;Ψ), G NS
2,k (Φ ;Ψ)

)
k=I+1,...,I+K

and for the primal mesh CM , as

G ∇
i (Φ) = ∑

j∈ν(i)
|ei j|

[
R

∑
r=1

ζrF
∇
i j,r

]
, G ∇(Φ) = (G ∇

i (Φ))i=1,...,I ,

which correspond to the finite volume scheme (6) and (8) cast in residual form, respectively.

Gathering all the components of the residuals in vector H (Φ ;Ψ)= (G NS(Φ ;Ψ),G ∇(Φ)),

for a given vector Ψ ∈ R2K , we introduce the global affine operator

Φ ∈ R2K+I →H (Φ ;Ψ) ∈ R2K+I .
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Vector Φ? = (ΦU,?,ΦP,?) ∈ R2K+I is the solution of the problem H (Φ ;Ψ) = 0, and pro-

vides constant piecewise approximations of U1, U2, and P. We then build the nonlinear

operator Ψ ∈ R2K →ΦU,? =H(Ψ) ∈ R2K which maps the guessed velocity to the solution

of the Oseen equation.

4.2 Fixed-point algorithm

Based on the affine operator H(Ψ) defined above, we introduce a fixed-point algorithm to

find the solution of the nonlinear problem H(ΦU ) = ΦU . The algorithm is described hereby

and a schematic representation is shown in Fig. 3:

(1) Give C ∈ R\{0} and set Ψ 0 = (C) ∈ R2K (in practice we choose C = 1 for the sake of

convenience), give RMAX ∈ R+, and set n = 0;

(2) Compute ΦU,n =H(Ψ n) and ΦP,n solution of H (Φ ;Ψ n) = 0;

(3) Compute the L1-norm residual Rn, given by Rn = ‖ΦU,n−Ψ n‖/‖Ψ n‖, where

‖ΦU,n−Ψ n‖=
2

∑
β=1

∑
k∈CD

|Un
β ,k−Λ n

β ,k||ck|

∑
k∈CD

|ck|
, ‖Ψ n‖=

2

∑
β=1

∑
k∈CD

|Λ n
β ,k||ck|

∑
k∈CD

|ck|
;

(4) If Rn < RMAX, stop the algorithm and ΦU,? = ΦU,n is the solution; otherwise go to (5);

(5) Compute Ψ n+1 as a relaxation between ΦU,n and Ψ n, with θ the relaxation coefficient,

as

Ψ n+1 = θΦU,n +(1−θ)Ψ n;

(6) Increment n and go to (2).
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Yes

No

Initializations

Ψ 0, n = 0

Solve Residual Operator

ΦU,n = H(Ψ n)

Convergence?

Rn < RMAX

Solution

ΦU,? = ΦU,n

n← n+ 1
Vector Relaxation

Ψ n+1 = θΦU,n +(1−θ)Ψ n

Fig. 3 Fixed-point algorithm to find the fixed-point of operator H.

Remark 3 We highlight that if one sets Λ n = 0 when dealing with the Euler problem (ν = 0),

the resulting system of partial differential equations is ∇ · (0⊗U +PI2) = f and ∇ ·U = 0.

Clearly the first equation becomes ∇ ·(PI2) = f and the problem admits and infinity number

of solutions for U . In the same way, it is not wise to choose Ψ 0 = 0 since the fixed-point

algorithm will never converge.

5 Synthetic benchmark

In this section we quantitatively and qualitatively assess the robustness and accuracy of the

proposed method as well as its efficiency to solve the incompressible Navier-Stokes and

Euler systems of PDEs. The numerical tests were performed considering three situations:

an inviscid fluid (leading to the Euler problem), a fluid with viscosity ν = 10−5, and an

ultra-viscous fluid with ν = 1.
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In order to validate the implementation of the method and assess the convergence rates,

we manufacture an analytical solution on the unit square domain Ω = ]0,1[2, setting

U1(x) =
1
2
(3− cos(πx1)sin(πx2)), U2(x) =

1
2
(3− sin(πx1)cos(πx2)),

P(x) =
1
4
(cos(2πx1)+ cos(2πx2)).

We plot in Fig. 4 the isocontours of the horizontal component of the velocity, U1, and of

the vertical component of the velocity, U2, the isocontours of the magnitude of the velocity,

||U ||, and the isocontours of the pressure, P.
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Fig. 4 Isocontours of the horizontal component (top, left) and the vertical component of the velocity (top,
right), isocontours of the velocity magnitude (bottom, left), and isocontours of the pressure (bottom, right).
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The source terms are computed such that equations (1-2) hold and the Dirichlet bound-

ary condition derives from the exact solution.

5.1 Accuracy and error convergence rates assessment

To assess the accuracy and the convergence of the proposed method, consider vectors ΦU,?
β =

(U?
β ,k)k∈CD

, β = 1,2 and ΦP,? = (P?
i )i∈CM

which gather the numerical approximations of

the mean values of Uβ , β = 1,2, and P, respectively, and vectors ΦU
β = (Uβ ,k)k∈CD

, β = 1,2,

and ΦP
= (Pi)i∈CM

which gather the exact mean values Uβ ,k and Pi of Uβ and P, respec-

tively.

Uβ ,k =
1
|ck|

∫
ck

Uβ dx, Pi =
1
|ci|

∫
ci

P dx.

The L1-norm errors are given by

EU
β ,1(D) = ∑

k∈CD

|U?
β ,k−Uβ ,k||ck|, EP

1 (M ) = ∑
i∈CM

|P?
i −Pi||ci|,

and the L∞-norm errors are given by

EU
β ,∞(D) = max

k∈CD

|U?
β ,k−Uβ ,k|, EP

∞(M ) = max
i∈CM

|P?
i −Pi|.

The convergence rate for P with the L1-norm errors between two different primal meshes

M1 and M2, with I1 and I2 cells, respectively, where I1 6= I2, is evaluated as

O1(M1,M2) = 2
| log(EP

1 (M1)/EP
1 (M2))|

| log(I1/I2)|
.
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Likewise for diamond meshes D1 and D2 with K1 and K2 cells, we have

O1(D1,D2) = 2
| log(EU

β ,1(D1)/EU
β ,1(D2))|

| log(K1/K2)|
, β = 1,2.

We perform a similar estimate for the norm L∞ by substituting O1 with O∞.

In all the simulations the weights in functionals (11-12) are set to ωi j,q = 5, i ∈ CM ,

j ∈ ν(i), q ∈ Si j, if ei j is an edge of cq and ωi j,q = 1, otherwise. In the same way, for the

reconstructions on diamond edges we set ωβ ,k`,q = 5, k ∈ CD , ` ∈ ν(k), q ∈ Sk`, β = 1,2, if

ek` is an edge of cq and ωβ ,k`,q = 1, otherwise [11].

The choice of θ does not change the errors and convergence orders and θ = 0.5 was

employed for this benchmark.

5.1.1 Inviscid fluid

Simulations were carried out with successively finer regular triangular Delaunay meshes

(see Fig. 5, left) and the associated diamond meshes (see Fig. 5, right). The goal is to mea-

sure the order of convergence of the method.
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Fig. 5 A coarse uniform triangular Delaunay mesh (left) and the associated diamond mesh (right).
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In section 3.4.2, two reconstructions for the linearized velocity Λk`,r are proposed. For

the centred approximations, Tables 2 and 3 give the L1- and L∞-norm errors and the conver-

gence rates using P1, P3, and P5 polynomial reconstructions, respectively, where the number

of unknowns (the same as degrees of freedom) is DOF = K for U1 and U2 and DOF = I for

P. The P1 polynomial reconstruction provides a second-order approximation both for Uβ ,

β = 1,2, and for P while the P3 reconstruction achieves an effective fourth-order approx-

imation and the P5 reconstruction a sixth-order approximation. The convergence rates are

valid both for the L1- and L∞-norm errors and we highlight that no oscillations or numerical

locking are reported in all the experiences.

Table 2 L1-norm error and convergence rates for ν = 0 with centred Λk`,r approximations and using uniform
triangular Delaunay primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

168 1.06E−02 — 2.22E−03 — 4.62E−04 —
585 3.03E−03 2.01 1.40E−04 4.43 1.28E−05 5.75
2373 7.28E−04 2.04 8.82E−06 3.95 1.90E−07 6.01
9339 1.91E−04 1.95 5.61E−07 4.02 4.10E−09 5.60

U2

168 9.87E−03 — 2.29E−03 — 4.75E−04 —
585 2.85E−03 1.99 1.45E−04 4.42 1.31E−05 5.76
2373 7.26E−04 1.95 9.04E−06 3.96 1.94E−07 6.01
9339 1.89E−04 1.96 5.60E−07 4.06 4.11E−09 5.63

P

104 2.03E−02 — 4.24E−03 — 7.30E−04 —
374 4.98E−03 2.20 2.63E−04 4.34 1.68E−05 5.89
1550 1.10E−03 2.13 1.49E−05 4.04 1.72E−07 6.45
6162 2.60E−04 2.09 9.15E−07 4.04 3.26E−09 5.75
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Table 3 L∞-norm error and convergence rates for ν = 0 with centred Λk`,r approximations and using uniform
triangular Delaunay primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

168 5.07E−02 — 6.98E−03 — 1.79E−03 —
585 2.43E−02 1.18 5.98E−04 3.94 5.84E−05 5.49
2373 5.13E−03 2.22 5.01E−05 3.54 1.29E−06 5.45
9339 2.17E−03 1.26 4.53E−06 3.51 1.88E−08 6.17

U2

168 6.92E−02 — 8.77E−03 — 1.75E−03 —
585 1.20E−02 2.81 7.76E−04 3.89 5.03E−05 5.69
2373 4.33E−03 1.46 5.33E−05 3.83 1.06E−06 5.51
9339 2.22E−03 0.98 4.69E−06 3.55 1.66E−08 6.07

P

104 8.86E−02 — 1.33E−02 — 2.37E−03 —
374 2.37E−02 2.06 1.01E−03 4.02 1.35E−04 4.48
1550 7.71E−03 1.58 6.66E−05 3.83 2.13E−06 5.84
6162 2.15E−03 1.85 5.11E−06 3.72 3.24E−08 6.07

Robustness and accuracy assessments under deformed meshes are of crucial importance

in order to check the method capability to handle complex meshes still preserving high-

order convergence rates. To this end, we consider successively finer deformed quadrilateral

meshes (see Fig. 6), obtained from a random displacement of each inner vertex of structured

meshes controlled by a deformation factor (see the detailed procedure in [11]). In the present

experience, we choose a test case with 30% of deformation (see Fig. 6).
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Fig. 6 A coarse deformed quadrilateral mesh (left) and the associated diamond mesh (right).
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We deal again with the centred approximations for Λk`,r and report in Tables 4 and 5

the L1- and L∞-norm errors and convergence rates using P1, P3, and P5 polynomial recon-

structions, respectively. The scheme correctly handles complex meshes and the convergence

rates are optimal both for velocity and pressure and for both norm errors. Up to sixth-order

convergence rates are achieved using the P5 polynomial reconstruction and no oscillations

or numerical locking were noticed in all the experiences.

Table 4 L1-norm error and convergence rates for ν = 0 with centred Λk`,r approximations and using deformed
quadrilateral primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

168 1.06E−02 — 2.38E−03 — 1.03E−03 —
585 3.03E−03 2.01 1.77E−04 4.17 1.36E−05 6.93
2373 7.28E−04 2.04 1.71E−05 3.33 2.07E−07 5.98
9339 1.91E−04 1.95 1.07E−06 4.04 3.95E−09 5.78

U2

168 9.87E−03 — 2.24E−03 — 9.65E−04 —
585 2.85E−03 1.99 1.86E−04 3.99 1.34E−05 6.85
2373 7.26E−04 1.95 1.68E−05 3.43 2.10E−07 5.93
9339 1.89E−04 1.96 1.06E−06 4.03 3.95E−09 5.80

P

104 2.03E−02 — 3.83E−03 — 1.65E−03 —
374 4.98E−03 2.20 3.52E−04 3.73 1.64E−05 7.21
1550 1.10E−03 2.13 3.18E−05 3.38 2.16E−07 6.09
6162 2.60E−04 2.09 1.75E−06 4.20 3.29E−09 6.06

Table 5 L∞-norm error and convergence rates for ν = 0 with centred Λk`,r approximations and using de-
formed quadrilateral primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

168 5.07E−02 — 5.09E−03 — 2.48E−03 —
585 2.43E−02 1.18 7.35E−04 3.10 6.67E−05 5.80
2373 5.13E−03 2.22 4.97E−05 3.85 1.12E−06 5.83
9339 2.17E−03 1.26 4.52E−06 3.50 2.34E−08 5.65

U2

168 6.92E−02 — 7.56E−03 — 2.59E−03 —
585 1.20E−02 2.81 9.41E−04 3.34 7.08E−05 5.77
2373 4.33E−03 1.46 6.85E−05 3.74 1.03E−06 6.05
9339 2.22E−03 0.98 6.38E−06 3.47 1.74E−08 5.96

P

104 8.86E−02 — 1.50E−02 — 5.42E−03 —
374 2.37E−02 2.06 1.34E−03 3.77 1.48E−04 5.63
1550 7.71E−03 1.58 1.46E−04 3.12 2.34E−06 5.84
6162 2.15E−03 1.85 9.41E−06 3.97 5.37E−08 5.47
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We repeat the numerical tests considering now the upwind approximation for Λk`,r. For

regular triangular Delaunay meshes, we report in Tables 6 and 7 the L1- and L∞-norm er-

rors, respectively, and the associated convergence rates using the P1, P3, and P5 polyno-

mial reconstructions. The scheme based on the upwind approximations of Λk`,r provides

the expected convergence orders for both the velocity and the pressure, either for the L1- or

L∞-norm errors. The values are very similar to the centred case.

Table 6 L1-norm error and convergence rates for ν = 0 with upwind Λk`,r approximations and using uniform
triangular Delaunay primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

168 1.63E−02 — 2.70E−03 — 5.16E−04 —
585 3.87E−03 2.30 1.16E−04 5.05 1.33E−05 5.86
2373 9.72E−04 1.97 8.76E−06 3.69 2.10E−07 5.92
9339 2.87E−04 1.78 5.33E−07 4.09 3.48E−09 5.98

U2

168 1.55E−02 — 2.70E−03 — 5.15E−04 —
585 3.86E−03 2.23 1.20E−04 5.00 1.35E−05 5.84
2373 9.64E−04 1.98 8.89E−06 3.72 2.13E−07 5.92
9339 2.87E−04 1.77 5.32E−07 4.11 3.50E−09 6.00

P

104 3.33E−02 — 4.59E−03 — 8.77E−04 —
374 8.13E−03 2.20 2.20E−04 4.75 1.75E−05 6.11
1550 1.96E−03 2.00 1.45E−05 3.83 1.62E−07 6.59
6162 5.04E−04 1.97 8.83E−07 4.06 2.38E−09 6.11

Table 7 L∞-norm error and convergence rates for ν = 0 with upwind Λk`,r approximations and using uniform
triangular Delaunay primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

168 9.22E−02 — 8.56E−03 — 1.96E−03 —
585 2.59E−02 2.04 4.97E−04 4.56 5.45E−05 5.74
2373 5.72E−03 2.16 4.60E−05 3.40 1.19E−06 5.46
9339 3.17E−03 0.86 4.18E−06 3.50 1.92E−08 6.02

U2

168 4.76E−02 — 7.58E−03 — 2.09E−03 —
585 3.35E−02 0.56 5.86E−04 4.10 4.12E−05 6.30
2373 6.18E−03 2.41 4.23E−05 3.75 1.07E−06 5.22
9339 3.39E−03 0.88 4.26E−06 3.35 1.88E−08 5.90

P

104 1.63E−01 — 1.55E−02 — 2.90E−03 —
374 3.80E−02 2.28 9.03E−04 4.44 1.24E−04 4.93
1550 1.26E−02 1.55 7.42E−05 3.52 2.02E−06 5.79
6162 3.74E−03 1.76 5.25E−06 3.84 3.99E−08 5.69
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In Tables 8 and 9 are gathered the L1 and L∞ results in the case of successively finer

deformed quadrilateral meshes. Once again, the accuracy of the numerical approximations is

comparable to the centred case. The scheme is robust and stable when dealing with complex

meshes and provides the expected convergence rates for all variables.

Table 8 L1-norm error and convergence rates for ν = 0 with upwind Λk`,r approximations and using de-
formed quadrilateral primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

168 1.63E−02 — 2.30E−03 — 9.87E−04 —
585 3.87E−03 2.30 1.74E−04 4.14 1.17E−05 7.11
2373 9.72E−04 1.97 1.81E−05 3.24 1.64E−07 6.09
9339 2.87E−04 1.78 1.08E−06 4.12 3.23E−09 5.73

U2

168 1.55E−02 — 2.28E−03 — 9.39E−04 —
585 3.86E−03 2.23 1.83E−04 4.05 1.15E−05 7.06
2373 9.64E−04 1.98 1.76E−05 3.34 1.66E−07 6.05
9339 2.87E−04 1.77 1.07E−06 4.09 3.25E−09 5.74

P

104 3.33E−02 — 4.00E−03 — 1.66E−03 —
374 8.13E−03 2.20 3.36E−04 3.87 1.38E−05 7.48
1550 1.96E−03 2.00 3.37E−05 3.23 1.62E−07 6.25
6162 5.04E−04 1.97 1.78E−06 4.26 2.63E−09 5.97

Table 9 L∞-norm error and convergence rates for ν = 0 with upwind Λk`,r approximations and using de-
formed quadrilateral primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

168 9.22E−02 — 5.42E−03 — 2.17E−03 —
585 2.59E−02 2.04 6.14E−04 3.49 6.20E−05 5.70
2373 5.72E−03 2.16 5.04E−05 3.57 1.08E−06 5.78
9339 3.17E−03 0.86 4.69E−06 3.47 2.13E−08 5.73

U2

168 4.76E−02 — 6.23E−03 — 2.25E−03 —
585 3.35E−02 0.56 7.32E−04 3.43 6.32E−05 5.73
2373 6.18E−03 2.41 6.42E−05 3.48 1.12E−06 5.76
9339 3.39E−03 0.88 4.99E−06 3.73 2.07E−08 5.83

P

104 1.63E−01 — 1.41E−02 — 5.43E−03 —
374 3.80E−02 2.28 1.18E−03 3.87 1.37E−04 5.75
1550 1.26E−02 1.55 1.56E−04 2.85 1.77E−06 6.12
6162 3.74E−03 1.76 9.73E−06 4.02 5.42E−08 5.05
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5.1.2 Viscous fluid with ν = 10−5

We turn now to the case of a viscous fluid with ν = 10−5 and present the results obtained

with the centred version for Λk`,r since both approximations (centred and upwind) achieved

comparable accuracy when no viscous term is present.

Tables 10 and 11 provide L1- and L∞-norm errors and the convergence rates using P1, P3,

and P5 polynomial reconstructions, respectively, using regular triangular Delaunay meshes

as in Fig. 5. We obtain effective second-, fourth-, and sixth-order convergence rates for

the velocity and the pressure.l reconstructions, respectively. The convergence rates are the

expected ones both for L1- and L∞-norm errors and no oscillations or numerical locking are

reported in all the experiences.

Table 10 L1-norm error and convergence rates for ν = 10−5 with centred Λk`,r approximations and using
uniform triangular Delaunay primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

168 1.06E−02 — 2.22E−03 — 4.61E−04 —
585 3.03E−03 2.01 1.40E−04 4.44 1.28E−05 5.75
2373 7.27E−04 2.04 8.81E−06 3.95 1.89E−07 6.02
9339 1.90E−04 1.96 5.58E−07 4.03 4.04E−09 5.61

U2

168 9.86E−03 — 2.29E−03 — 4.74E−04 —
585 2.85E−03 1.99 1.45E−04 4.42 1.31E−05 5.76
2373 7.25E−04 1.95 9.02E−06 3.97 1.93E−07 6.02
9339 1.88E−04 1.97 5.57E−07 4.07 4.05E−09 5.64

P

104 2.03E−02 — 4.24E−03 — 7.30E−04 —
374 4.97E−03 2.20 2.63E−04 4.35 1.68E−05 5.89
1550 1.09E−03 2.13 1.49E−05 4.04 1.71E−07 6.45
6162 2.59E−04 2.08 9.11E−07 4.05 3.22E−09 5.76
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Table 11 L∞-norm error and convergence rates for ν = 10−5 with centred Λk`,r approximations and using
uniform triangular Delaunay primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

168 5.07E−02 — 6.98E−03 — 1.79E−03 —
585 2.43E−02 1.18 5.97E−04 3.94 5.82E−05 5.49
2373 5.12E−03 2.22 5.01E−05 3.54 1.28E−06 5.46
9339 2.15E−03 1.27 4.53E−06 3.51 1.86E−08 6.17

U2

168 6.92E−02 — 8.76E−03 — 1.74E−03 —
585 1.20E−02 2.81 7.75E−04 3.89 5.03E−05 5.68
2373 4.31E−03 1.46 5.31E−05 3.83 1.05E−06 5.52
9339 2.21E−03 0.98 4.69E−06 3.54 1.63E−08 6.08

P

104 8.86E−02 — 1.33E−02 — 2.37E−03 —
374 2.37E−02 2.06 1.01E−03 4.03 1.34E−04 4.49
1550 7.71E−03 1.58 6.65E−05 3.83 2.12E−06 5.83
6162 2.14E−03 1.85 5.10E−06 3.72 3.20E−08 6.08

We carry out the same simulations using deformed quadrilateral meshes as in Fig. 6. In

Tables 12 and 13 we report the L1- and L∞- norm errors and convergence rates for P1, P3,

and P5 polynomial reconstructions, respectively. As in the invicid case, the method handles

complex meshes since we obtain the expected convergence orders for both L1- and L∞-norm

errors.

Table 12 L1-norm error and convergence rates for ν = 10−5 with centred Λk`,r approximations and using
deformed quadrilateral primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

220 6.46E−03 — 9.93E−04 — 1.04E−03 —
840 1.58E−03 2.10 9.79E−05 3.46 1.47E−05 6.36
3280 3.82E−04 2.09 5.30E−06 4.28 3.79E−07 5.37
12960 9.40E−05 2.04 3.18E−07 4.10 5.19E−09 6.25

U2

220 5.42E−03 — 1.08E−03 — 1.08E−03 —
840 1.48E−03 1.94 9.84E−05 3.58 1.52E−05 6.37
3280 3.61E−04 2.07 5.52E−06 4.23 4.15E−07 5.29
12960 9.03E−05 2.02 3.23E−07 4.13 5.45E−09 6.31

P

100 1.46E−02 — 3.40E−03 — 3.28E−03 —
400 3.09E−03 2.24 1.61E−04 4.40 1.62E−05 7.66
1600 6.87E−04 2.17 6.91E−06 4.54 4.03E−07 5.33
6400 1.55E−04 2.15 2.86E−07 4.59 3.11E−09 7.02
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Table 13 L∞-norm error and convergence rates for ν = 10−5 with centred Λk`,r approximations and using
deformed quadrilateral primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

220 3.05E−02 — 4.28E−03 — 5.79E−03 —
840 1.17E−02 1.43 8.34E−04 2.44 1.21E−04 5.77
3280 3.71E−03 1.69 5.82E−05 3.91 1.48E−05 3.08
12960 1.04E−03 1.85 4.49E−06 3.73 8.11E−08 7.58

U2

220 2.26E−02 — 1.01E−02 — 1.46E−02 —
840 8.79E−03 1.41 7.92E−04 3.80 1.80E−04 6.56
3280 2.53E−03 1.83 7.61E−05 3.44 1.76E−05 3.41
12960 7.42E−04 1.79 5.50E−06 3.83 8.27E−08 7.80

P

100 1.25E−01 — 5.20E−03 — 6.94E−03 —
400 3.35E−02 1.90 5.73E−04 3.18 2.37E−04 4.87
1600 9.32E−03 1.85 4.20E−05 3.77 1.05E−05 4.49
6400 2.00E−03 2.22 4.56E−06 3.20 1.55E−07 6.08

5.1.3 Viscous fluid with ν = 1

The last accuracy test concerns an ultra-viscous fluid with ν = 1. As in the previous case, the

following results were carried out only with centred approximations for Λk`,r. We have how-

ever checked that the upwind case provides comparable results. We report in Tables 14 and

15 the L1- and L∞-norm errors and the convergence rates using the P1, P3, and P5 polyno-

mial reconstructions, respectively, and regular triangular Delaunay meshes. We observe an

effective second-, fourth- and sixth-order convergence rates for the velocity with P1, P3, and

P5 polynomial reconstructions, respectively. Unlike to the other two cases (inviscid fluid and

viscous fluid with ν = 10−5), we just achieved a first-, third-, and fifth-order convergence

rates for the pressure with P1, P3, and P5 polynomial reconstructions, respectively. Such

results are expected when the diffusive term of the Navier-Stokes equation is dominant over

the convective term or when no convective term is considered at all as in the the Stokes prob-

lem. The convergence rates are valid both for the L1- and L∞-norm errors and we highlight

that no oscillations or numerical locking are reported in all the experiences.
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Table 14 L1-norm error and convergence rates for ν = 1 with centred Λk`,r approximations and using uniform
triangular Delaunay primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

168 2.32E−03 — 1.88E−04 — 2.78E−05 —
585 4.85E−04 2.51 9.54E−06 4.78 1.41E−07 8.47
2373 1.14E−04 2.06 5.05E−07 4.20 1.50E−09 6.49
9339 2.75E−05 2.08 3.02E−08 4.11 2.36E−11 6.06

U2

168 2.51E−03 — 1.81E−04 — 2.65E−05 —
585 5.08E−04 2.56 9.72E−06 4.69 1.31E−07 8.51
2373 1.14E−04 2.13 5.09E−07 4.21 1.50E−09 6.38
9339 2.74E−05 2.08 3.02E−08 4.12 2.29E−11 6.11

P

104 6.77E−02 — 5.27E−03 — 6.38E−04 —
374 2.86E−02 1.35 4.10E−04 3.99 5.82E−06 7.34
1550 1.14E−02 1.29 3.88E−05 3.32 9.87E−08 5.74
6162 5.36E−03 1.09 4.25E−06 3.21 2.46E−09 5.35

Table 15 L∞-norm error and convergence rates for ν = 1 with centred Λk`,r approximations and using uni-
form triangular Delaunay primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

168 9.41E−03 — 8.55E−04 — 2.39E−04 —
585 3.45E−03 1.61 5.32E−05 4.45 1.98E−06 7.69
2373 8.58E−04 1.99 3.79E−06 3.77 1.17E−08 7.33
9339 2.17E−04 2.01 2.28E−07 4.10 1.41E−10 6.45

U2

168 9.35E−03 — 6.99E−04 — 2.12E−04 —
585 3.68E−03 1.49 4.30E−05 4.47 1.72E−06 7.72
2373 8.79E−04 2.05 3.75E−06 3.48 1.02E−08 7.32
9339 2.20E−04 2.02 2.23E−07 4.12 1.21E−10 6.47

P

104 2.34E−01 — 1.82E−02 — 5.01E−03 —
374 1.37E−01 0.84 2.73E−03 2.96 7.29E−05 6.61
1550 7.79E−02 0.80 3.88E−04 2.75 6.67E−07 6.60
6162 3.59E−02 1.12 4.63E−05 3.08 2.76E−08 4.61

For the deformed quadrilateral meshes, we report in Tables 16 and 17 the L1- and L∞-

norm errors and convergence rates using the P1, P3, and P5 polynomial reconstructions,

respectively. The results confirm that the method can handle complex meshes still obtaining

the expected convergence orders (the ones achieved using Delaunay meshes) for both L1-

and L∞-norm errors.
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Table 16 L1-norm error and convergence rates for ν = 1 with centred Λk`,r approximations and using de-
formed quadrilateral primal meshes.

P1 P3 P5
DOF E1 O1 E1 O1 E1 O1

U1

220 1.62E−03 — 5.35E−05 — 6.64E−06 —
840 3.95E−04 2.11 2.43E−06 4.62 8.65E−08 6.48
3280 8.99E−05 2.17 1.36E−07 4.24 5.28E−10 7.49
12960 2.21E−05 2.04 8.25E−09 4.08 5.57E−12 6.63

U2

220 1.96E−03 — 5.51E−05 — 6.90E−06 —
840 3.97E−04 2.38 2.31E−06 4.74 9.33E−08 6.42
3280 9.10E−05 2.16 1.42E−07 4.09 4.88E−10 7.71
12960 2.19E−05 2.07 8.47E−09 4.10 5.76E−12 6.46

P

100 4.25E−02 — 1.37E−03 — 9.84E−05 —
400 1.44E−02 1.56 1.33E−04 3.37 1.86E−06 5.72
1600 5.28E−03 1.45 1.09E−05 3.61 2.72E−08 6.09
6400 2.19E−03 1.27 1.06E−06 3.37 5.33E−10 5.67

Table 17 L∞-norm error and convergence rates for ν = 1 with centred Λk`,r approximations and using de-
formed quadrilateral primal meshes.

P1 P3 P5
DOF E∞ O∞ E∞ O∞ E∞ O∞

U1

220 7.06E−03 — 2.53E−04 — 7.41E−05 —
840 1.70E−03 2.12 1.37E−05 4.35 1.11E−06 6.27
3280 5.12E−04 1.76 8.51E−07 4.08 1.37E−08 6.45
12960 1.34E−04 1.95 5.72E−08 3.93 1.11E−10 7.01

U2

220 7.13E−03 — 3.94E−04 — 6.31E−05 —
840 2.02E−03 1.89 1.92E−05 4.51 9.78E−07 6.22
3280 6.13E−04 1.75 7.83E−07 4.70 1.46E−08 6.17
12960 1.36E−04 2.19 5.62E−08 3.84 1.00E−10 7.25

P

100 1.88E−01 — 9.05E−03 — 6.20E−04 —
400 8.28E−02 1.18 1.08E−03 3.07 1.99E−05 4.97
1600 4.67E−02 0.83 1.35E−04 3.00 7.29E−07 4.77
6400 2.45E−02 0.93 1.78E−05 2.92 1.31E−08 5.80

5.2 Fixed-point convergence assessment

This section is dedicated to assess the convergence and efficiency of the fixed-point algo-

rithm. We reuse the previous manufactured solution and consider the three different kinds

of fluids, that is, inviscid fluid, viscous fluid with ν = 10−5, and ultra-viscous fluid with

ν = 1. Comparisons between centred and upwind approximation for Λk`,r are performed

and different relaxation factors (θ = 1,0.8,0.5) are experimented. The relaxation of the in-

termediate solutions does not affect the final solution but has a strong impact on the number
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of fixed-point iterations required to achieve convergence and, consequently, the execution

time of the simulation.

5.2.1 Inviscid fluid

Table 18 gives the number of iterations for the inviscid fluid with successively finer regular

triangular Delaunauy meshes and deformed quadrilateral meshes using the P1, P3, and P5

polynomial reconstructions.

Table 18 Number fixed-point iterations using regular triangular Delaunay and quadrilateral deformed meshes
with ν = 0.

Delaunay Deformed
θ 440 1544 6296 24840 540 2080 8160 32320

P1

Centred
1 38 30 33 35 38 30 34 35
0.8 26 30 25 26 27 31 25 26
0.5 47 53 43 39 47 53 43 39

Upwind
1 NC NC NC NC NC NC NC NC
0.8 83 114 126 82 83 114 127 82
0.5 138 55 91 134 138 55 91 132

P3

Centred
1 90 67 47 33 94 66 40 26
0.8 26 23 20 22 59 22 20 20
0.5 47 43 38 39 72 40 38 38

Upwind
1 NC NC NC NC NC NC NC NC
0.8 45 56 93 72 46 60 NC NC
0.5 48 47 51 38 47 49 38 38

P5

Centred
1 NC 147 124 115 82 98 72 47
0.8 37 30 26 23 31 30 25 33
0.5 60 52 43 39 55 51 43 39

Upwind
1 NC NC NC NC NC NC NC NC
0.8 37 32 26 26 39 35 30 NC
0.5 58 52 39 42 49 60 42 42

Convergence. We report that no convergence was achieved in certain cases, in particular

when the upwind approximation for Λk`,r are used with no relaxation (θ = 1). However,

convergence is recovered when considering a smaller relaxation parameter θ = 0.8. On the

other hand, we only report one case of no convergence for the centred case with θ = 1.

Efficiency. For the centred case, the minimum number of fixed-point iterations is achieved

for θ = 0.8. For the upwind case, the picture is not so clear since a stronger relaxation

(θ = 0.5) provides a faster convergence for Delaunay meshes whereas no clear conclusion
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can be drawn for the deformed meshes. The number of fixed-point iterations is almost inde-

pendent of the number of unknowns (DOF) since it is essentially invariant with respect to the

successively finer meshes, either for the regular triangular Delaunay meshes or the deformed

quadrilateral meshes. We also report the same insensitivity with respect to the polynomial

degree for the reconstructions. Finally, we notice that the centred case presents a better con-

vergence than the upwind case. In fact, the centred case achieves convergence even with no

relaxation unlike the upwind case and, when both converge, it requires a smaller number of

fixed-point iterations. Since the accuracy for the two scenarii is similar, we conclude that the

centred approach is more stable, faster and therefore more efficient.

5.2.2 Viscous fluid with ν = 10−5 and ν = 1

In Table 19 we treat the case with ν = 10−5. As in the previous case, the centred approach

enjoys a better convergence than the upwind approach and the minimum number of fixed-

point iterations is achieved for θ = 0.8.

Table 19 Number fixed-point iterations using regular triangular Delaunay and quadrilateral deformed meshes
with ν = 10−5.

Delaunay Deformed
θ 440 1544 6296 24840 540 2080 8160 32320

P1

Centred
1 31 33 35 39 208 202 88 73
0.8 32 42 23 22 30 27 21 20
0.5 57 69 40 38 45 44 38 37

Upwind
1 NC NC NC NC NC NC NC NC
0.8 84 113 123 81 NC 48 65 NC
0.5 138 55 91 130 NC 57 49 NC

P3

Centred
1 102 109 66 38 NC NC NC NC
0.8 31 28 21 21 61 49 42 28
0.5 53 49 38 38 100 81 67 46

Upwind
1 NC NC NC NC NC NC NC NC
0.8 45 56 93 72 51 56 42 29
0.5 48 47 52 39 76 64 63 46

P5

Centred
1 NC NC NC NC NC NC NC NC
0.8 44 32 31 30 56 65 104 32
0.5 84 56 52 45 93 104 167 53

Upwind
1 NC NC NC NC NC NC NC NC
0.8 37 32 25 25 54 80 60 33
0.5 57 52 39 42 77 132 95 55
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Finally we present in Table 20 the results for ν = 1, where we observe that the two

analysed cases are very similar. Such behavior is expected since the convective part of the

Navier-Stokes equation is less dominant as the viscosity of the fluid increases. Moreover,

the minimum number of fixed-point iterations, achieved with no relaxation, is smaller than

the ones for the inviscid case and the viscous case with ν = 10−5. In fact, the nonlinearity

contribution of the Navier-Stokes equation turns out to be negligible and as a consequence

we mainly deal with the linear Stokes problem.

Table 20 Number fixed-point iterations using regular triangular Delaunay and quadrilateral deformed meshes
with ν = 1.

Delaunay Deformed
θ 440 1544 6296 24840 540 2080 8160 32320

P1

Centred
1 7 7 7 6 7 7 7 6
0.8 17 17 17 18 17 17 17 18
0.5 37 37 37 41 37 37 37 38

Upwind
1 9 7 7 6 8 7 7 6
0.8 17 17 17 18 17 17 17 17
0.5 37 37 37 41 37 37 37 37

P3

Centred
1 7 7 7 6 7 7 7 7
0.8 17 17 17 18 17 17 17 17
0.5 37 37 37 41 37 37 37 37

Upwind
1 8 7 7 6 8 7 7 6
0.8 17 17 17 18 17 17 17 17
0.5 37 37 37 41 37 37 37 37

P5

Centred
1 7 7 7 6 7 7 7 7
0.8 17 17 17 18 17 17 17 17
0.5 37 37 37 41 37 37 37 37

Upwind
1 8 7 7 6 7 7 7 6
0.8 17 17 17 18 17 17 17 18
0.5 37 37 37 41 37 37 37 37

5.3 Time performance assessment

Let us monitor the accuracy as a function of the computational cost of the method. For a

given tolerance, we want to determine the mesh and the associated execution time one has

to consider to provide a prescribed accuracy for the different types of reconstruction. To

do so, we record the execution time, called TE, and we compute the L2-norm errors of the
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velocity and the pressure, given by
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,

using successively finer regular triangular Delaunay meshes and deformed quadrilateral

meshes. The mesh sizes are the same for the P1, P3, and P5 polynomial reconstructions,

and have 440, 1544, 6296, and 24840 degrees of freedom for the case of triangular Delau-

nay meshes and 540, 2080, 8160, and 32320 degrees of freedom for the case of deformed

quadrilateral meshes. The simulation were carried out with centred approximations for Λk`,r

since the upwind case provides comparable execution times.

5.3.1 Inviscid fluid

We plot in Fig. 7 the L2-norm error as a function of the execution time for P1, P3, and

P5 polynomial reconstructions using regular triangular Delaunay meshes (left panel) and

deformed quadrilateral meshes (right panel) with relaxation factor of θ = 0.8.

1E0 1E1 1E2 1E3 1E4

1E0

1E-2

1E-4

1E-6

1E-8

1E-10

Execution Time, TE [s]

L
2
-n
o
rm
E
rr
o
r,
E
2

EU2 , P1
EP2 , P1
EU2 , P3
EP2 , P3
EU2 , P5
EP2 , P5

1E0 1E1 1E2 1E3 1E4

1E0

1E-2

1E-4

1E-6

1E-8

1E-10

Execution Time, TE [s]

L
2
-n
o
rm
E
rr
o
r,
E
2

EU2 , P1
EP2 , P1
EU2 , P3
EP2 , P3
EU2 , P5
EP2 , P5

Fig. 7 L2-norm error as a function of the execution time with P1, P3, and P5 polynomial reconstructions and θ = 0.8 using regular
triangular Delaunay meshes (left) and deformed quadrilateral meshes (right).

Clearly the P5 reconstruction has the lowest computational cost to reach a given error.

As an example, to provide a numerical solution such that the L2-error of the velocity is

lower than 10−6, the P5 version requires around 120s with a mesh of 1000 cells (roughly
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speaking), the P3 reconstruction needs 1200s with a mesh of 6000 cells, and the P1 second-

order method performs the computation in 108s (about 3 years) with a mesh of about 107

cells (estimated value).

We now repeat the tests but with θ = 0.5. Taking in consideration the results presented

in Fig. 8, we conclude again that the P5 reconstruction is more efficient for a given tolerance

when compared to the P3 which is also more efficient compared to the P1 reconstruction.
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Fig. 8 L2-norm error as a function of the execution time with P1, P3, and P5 polynomial reconstructions and θ = 0.5 using regular
triangular Delaunay meshes (left) and deformed quadrilateral meshes (right).

5.3.2 Viscous fluid with ν = 10−5

We now deal with the viscous fluid with ν = 10−5 and plot in Fig. 9 and in Fig. 10 the

L2-norm error as a function of the execution time with P1, P3, and P5 polynomial recon-

structions for regular triangular Delaunay meshes (left panel) and deformed quadrilateral

meshes (right panel) with relaxation factor of θ = 0.8 and θ = 0.5, respectively. When us-

ing regular triangular Delaunay meshes, the P5 reconstruction is clearly the most efficient

followed by the P3 reconstruction. For deformed quadrilateral meshes the P3 reconstruc-

tion and the P5 reconstruction seems to be comparable for coarse and middle range meshes.

Indeed, we have noticed in Table 19 that the P5 requires a few more iterations than P3 to

achieve convergence which leads to a higher execution time.
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Fig. 9 L2-norm error as a function of the execution time with P1, P3, and P5 polynomial reconstructions and θ = 0.8 using regular
triangular Delaunay meshes (left) and deformed quadrilateral meshes (right).
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Fig. 10 L2-norm error as a function of the execution time with P1, P3, and P5 polynomial reconstructions and θ = 0.5 using
regular triangular Delaunay meshes (left) and deformed quadrilateral meshes (right).

5.3.3 Viscous fluid with ν = 1

Finally, we deal with the ultra-viscous fluid (ν = 1) and plot in Fig.s 11, 12, and 13 the

L2-norm error as a function of the execution time for regular triangular Delaunay meshes

(left panel) and deformed quadrilateral meshes (right panel) with relaxation factor θ = 1,

θ = 0.8, and θ = 0.5, respectively. We first notice that the lines corresponding to the velocity

and the pressure errors do not overlap anymore as in the previous cases since the pressure

convergence is one order lower compared to the velocity. Secondly, the P5 reconstruction

is clearly more efficient followed by the P3 reconstruction which justifies the interest of

very-high order schemes.
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Fig. 11 L2-norm error as a function of the execution time with P1, P3, and P5 polynomial reconstructions and θ = 1 using regular
triangular Delaunay meshes (left) and deformed quadrilateral meshes (right).
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Fig. 12 L2-norm error as a function of the execution time with P1, P3, and P5 polynomial reconstructions and θ = 0.8 using
regular triangular Delaunay meshes (left) and deformed quadrilateral meshes (right).
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Fig. 13 L2-norm error as a function of the execution time with P1, P3, and P5 polynomial reconstructions and θ = 0.5 using
regular triangular Delaunay meshes (left) and deformed quadrilateral meshes (right).
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6 Lid-driven square cavity problem

The 2D steady-state lid-driven square cavity problem is a popular benchmark to validate

numerical methods in solving the Navier-Stokes equations. A unit square cavity Ω = ]0,1[2

containing a viscous fluid with UD(x) = (1,0), x ∈ ∂Ω , x2 = 1, UD(x) = (0,0), x ∈ ∂Ω ,

x2 6= 1 (static walls). In order to deal with one parameter model (since ν > 0 we can compute

the Reynolds number), we consider the dimensionless variables L∗ = L/Lref for the length,

U∗ =U/Uref for the flow velocity, P∗ = PLref/µUref for the pressure where Lref and Uref are

reference values for the length and the magnitude of the flow velocity, respectively, and µ

is the dynamic viscosity of the fluid. Under this rescaling, the non-dimensionalized steady-

state incompressible Navier-Stokes problem is given by

∇ · (ReU∗⊗U∗−∇U∗+P∗I) = 0, in Ω ,

∇ ·U∗ = 0, in Ω ,

where Re is the Reynolds number given by Re = ρUrefLref/µ . The linearization of the non-

dimensionalized Navier-Stokes problem yields

∇ · (ReU∗⊗Λ ∗−∇U∗+P∗I) = 0, in Ω ,

∇ ·U∗ = 0, in Ω ,

where Λ ∗ stands for a guess of U∗. We solve this system of equations as before and hav-

ing the velocity in hand, we compute the vorticity of the flow, ω ≡ ω(x) = ∇×U∗. The

stream function, ψ ≡ ψ(x), for the lid-driven cavity problem can be found from the vortic-

ity through the Poisson equation ∇2ψ = −ω in Ω , with the Dirichlet boundary condition

ψD(x) = 0 on ∂Ω .
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We consider two cases corresponding to Reynolds numbers Re = 100 and Re = 400.

The simulations employ structured quadrilateral meshes with 10×10, 20×20, 40×40, and

80× 80 cells using a centred approximations for Λk`,r and P1, P2, P3, and P5 polynomial

reconstructions. For all the cases the relaxation coefficient was set θ = 0.5.

Figure 14 displays the streamlines for Re = 100. Clearly the P5 reconstruction system-

atically better captures the stream function contours compared to the other reconstructions

using the same mesh, followed by the P3 and the P2 reconstructions, whereas the P1 recon-

struction always provides the worst results. The P5 reconstruction manages to capture (even

if not very accurately) the secondary vortices with a mesh of 20×20 cells whereas the P3 re-

construction requires 20×20 cells mesh to capture the right secondary vortex and a 40×40

cells mesh to capture the left secondary vortex. On the other hand, the P2 reconstruction

needs the 40× 40 cells mesh to catch the right secondary vortex whereas the 80× 80 cells

mesh is necessary to distinguish the left secondary vortex. For P1 reconstruction where only

80× 80 cells mesh enables to capture both vortices. To achieve the same quality for the

secondary vortices captured by the P5 reconstruction with a mesh of 40×40 cells, a 80×80

cells mesh with the P3 reconstruction is required. The P1 reconstruction never achieves such

a quality.
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Fig. 14 Streamlines for the lid-driven cavity problem with Re = 100 and P1, P2, P3, and P5 polynomial reconstructions from the first to the last
rows using meshes of 10×10 cells, 20×20 cells, 40×40 cells, and 80×80 cells from the first to the last columns.

Tables 21 and 22 provide the coordinates of the center of the primary vortex and of the

centers of the secondary vortices, respectively, as well as the associated values of ψ function
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for each simulation carried out with Re = 100. We also compare the locations of the vortices

obtained by our simulation with the values obtained in the literature [39–43].

The simulation carried out with the P5 reconstruction situates the centre of the primary

vortex at x = (0.6141,0.7359) with ψ(x) = −0.104 which matches well with the values

obtained from the literature. Notice that the location does not change for the 40× 40 and

80×80 cells meshes and the same invariance holds with the P3 reconstruction. Suck vortex

center is achieved by P2 reconstruction only with the 40×40 cells mesh whereas we need a

80×80 cells mesh to obtain the same accuracy using the P1 reconstruction. Concerning the

secondary vortices, we observe a large deviation of the vortices centre between the different

authors. Nonetheless, the values we have obtained both for the left and for the right vortices

converge when the mesh is refined.

Table 21 Strength and location of the center of the primary vortex for the lid-driven square cavity problem
with Re = 100.

Mesh ψmin x1 x2

P1

10×10 −0.112 0.6047 0.7797
20×20 −0.109 0.6047 0.7609
40×40 −0.105 0.6078 0.7422
80×80 −0.104 0.6172 0.7359

P2

10×10 −0.118 0.5922 0.7234
20×20 −0.106 0.6141 0.7359
40×40 −0.104 0.6109 0.7359
80×80 −0.104 0.6172 0.7391

P3

10×10 −0.111 0.6234 0.7547
20×20 −0.105 0.6172 0.7391
40×40 −0.104 0.6141 0.7359
80×80 −0.104 0.6141 0.7359

P5

10×10 −0.103 0.6109 0.7547
20×20 −0.103 0.6109 0.7391
40×40 −0.104 0.6141 0.7359
80×80 −0.104 0.6141 0.7359

[43] 40×40 −0.103 0.6125 0.7375
[40] 128×128 −0.103 0.6172 0.7344
[42] 255×255 −0.103 0.6196 0.7373
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Table 22 Strength and location of the centers of the secondary vortices for the lid-driven square cavity
problem with Re = 100.

Bottom left Bottom right
Mesh ψmax x1 x2 ψmax x1 x2

P1

10×10 NF — — NF — —
20×20 NF — — NF — —
40×40 3.688E−5 0.0297 0.0859 7.341E−5 0.9453 0.1047
80×80 8.460E−6 0.0422 0.0391 2.830E−5 0.9359 0.0672

P2

10×10 NF — — NF — —
20×20 NF — — NF — —
40×40 NF — — 1.200E−5 0.9391 0.0609
80×80 1.567E−6 0.0297 0.0391 1.253E−5 0.9453 0.0641

P3

10×10 NF — — 8.382E−4 0.9422 0.0703
20×20 NF — — 2.022E−5 0.9109 0.0453
40×40 4.826E−6 0.0203 0.0578 1.505E−5 0.9422 0.0641
80×80 2.036E−6 0.0359 0.0328 1.301E−5 0.9422 0.0609

P5

10×10 NF — — 9.160E−4 0.9422 0.0734
20×20 7.590E−6 0.0672 0.0297 2.351E−5 0.9234 0.0640
40×40 2.838E−6 0.0391 0.0359 1.388E−5 0.9422 0.0609
80×80 1.952E−6 0.0328 0.0359 1.292E−5 0.9522 0.0609

[43] 40×40 1.83E−6 0.0375 0.0375 1.45E−5 0.9375 0.0625
[40] 128×128 1.75E−6 0.0313 0.0391 1.25E−5 0.9453 0.0625
[42] 255×255 1.72E−6 0.0392 0.0353 1.22E−5 0.9451 0.0627

We now consider Re = 400, ploting in Fig. 15 the streamlines. We achieve the same con-

clusions for the Re = 400 case as for the Re = 100 one, that is, the P5 reconstruction always

capture better contours for the stream function compared to the other reconstructions using

the same mesh, followed by the P3 and the P2 reconstructions, where the P1 reconstruction

is always the worst case. Similarly, the P5 and P3 reconstructions can capture (even if not

very accurately) both the secondary vortices with a mesh of 20×20 cells. On the other hand,

the P2 reconstruction needs a mesh of 40×40 cells to capture the secondary vortices while

the P1 reconstruction requires a mesh of 80×80 cells. Using the 40×40 cells mesh, the P3

and P5 reconstruction manage to provide comparable contours for the stream function while

the P2 reconstruction needs a mesh of 80×80 cells for the same quality. On the other hand,

the P1 reconstruction does not provide comparable quality even with the 80×80 cells mesh.
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Fig. 15 Streamlines for the lid-driven cavity problem with Re = 400 and P1, P2, P3, and P5 polynomial reconstructions from the first to the last
rows using meshes of 10×10 cells, 20×20 cells, 40×40 cells, and 80×80 cells from the first to the last columns.

Tables 23 and 24 provide the coordinates of the center of the primary vortex and of the

centers of the secondary vortices, respectively, as well as the associated values of ψ function
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for each simulation carried out with Re = 400. The values obtained in the works [39–43] are

also reported for comparison purposes.

The P5 reconstruction provides the location of a primary vortex at x = (0.5547,0.6047)

with ψ(x) = −0.114 which has a good match with the values obtained from the literature.

Such a result is also achieved with the P2 and P3 reconstructions whereas the P1 fails to

provide the correct location. A good match both for the left and right vortices is obtained

when compared to the values from the literature.

Table 23 Strength and location of the center of the primary vortex for the lid-driven square cavity problem
with Re = 400.

Mesh ψmin x1 x2

P1

10×10 NC — —
20×20 −0.119 0.5641 0.6297
40×40 −0.116 0.5547 0.6391
80×80 −0.114 0.5547 0.6078

P2

10×10 NC — —
20×20 −0.125 0.5453 0.6116
40×40 −0.116 0.5516 0.6047
80×80 −0.114 0.5547 0.6047

P3

10×10 −0.129 0.5484 0.6047
20×20 −0.118 0.5516 0.6016
40×40 −0.115 0.5547 0.6047
80×80 −0.114 0.5547 0.6047

P5

10×10 −0.109 0.5547 0.6203
20×20 −0.112 0.5547 0.6109
40×40 −0.114 0.5547 0.6078
80×80 −0.114 0.5547 0.6047

[43] 80×80 −0.113 0.5500 0.6125
[40] 128×128 −0.114 0.5547 0.6055
[42] 255×255 −0.112 0.5608 0.6078
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Table 24 Strength and location of the centers of the secondary vortices for the lid-driven square cavity
problem with Re = 400.

Bottom left Bottom right
Mesh ψmax x1 x2 ψmax x1 x2

P1

10×10 NC — — NC — —
20×20 NF — — 2.326E−3 0.8516 0.1484
40×40 8.093E−5 0.0828 0.0578 1.024E−3 0.8891 0.1328
80×80 3.035E−5 0.0672 0.0422 7.585E−4 0.8734 0.1266

P2

10×10 NC — — NC — —
20×20 NF — — 8.762E−4 0.8641 0.1328
40×40 1.641E−5 0.0547 0.0547 6.763E−4 0.8891 0.1297
80×80 1.419E−5 0.0516 0.0516 6.484E−4 0.8859 0.1266

P3

10×10 NF — — NF — —
20×20 4.958E−5 0.0359 0.0922 7.357E−4 0.9016 0.1359
40×40 1.967E−5 0.0516 0.0484 6.580E−4 0.8859 0.1234
80×80 1.512E−5 0.0516 0.0484 6.447E−4 0.8859 0.1234

P5

10×10 NF — — NF — —
20×20 4.076E−5 0.0547 0.0609 6.465E−4 0.8703 0.1266
40×40 1.695E−5 0.0516 0.0516 6.391E−4 0.8859 0.1234
80×80 1.476E−5 0.0516 0.0484 6.427E−4 0.8859 0.1234

[43] 80×80 1.30E−5 0.0500 0.0500 6.48E−4 0.8875 0.1250
[40] 128×128 1.42E−5 0.0508 0.0469 6.42E−4 0.8906 0.1250
[42] 255×255 1.30E−5 0.0549 0.0510 6.19E−4 0.8902 0.1255

7 Conclusions

We have presented a high-order accurate finite volume scheme to solve the bidimensional

incompressible Navier-Stokes and Euler problems based on a new class of polynomial re-

constructions. The scheme achieves an effective sixth-order accuracy for the velocity and a

sixth- or fifth-order accuracy for the pressure depending on the Reynolds number associated

with the flow. Detailed numerical tests were carried out to prove the efficiency and the sta-

bility of the new high-order scheme. We show that the use of very high-order finite volume

schemes decreases the computational effort required to achieve a given accurate solutions.

We have also carried out the simulation of the classical lid-driven square cavity problem

and we have numerically proved the capacity of the high-order scheme to retrieve accurate

solutions for the stream function with coarse meshes.
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