406 research outputs found

    Bayesian blind component separation for Cosmic Microwave Background observations

    Full text link
    We present a technique for the blind separation of components in CMB data. The method uses a spectral EM algorithm which recovers simultaneously component templates, their emission law as a function of wavelength, and noise levels. We test the method on Planck HFI simulated observations featuring 3 astrophysical components.Comment: 15 pages, 5 figures, to appear in the Proceedings of the MAXENT 2001 international worksho

    Independent Component analysis of the Cosmic Microwave Background

    Get PDF
    This paper presents an application of ICA to astronomical imaging. A first section describes the astrophysical context and motivates the use of source separation ideas. A second section describes our approach to the problem: the use of a noisy Gaussian stationary model. This technique uses spectral diversity and take explicitly into account contamination by additive noise. Preliminary and extremely encouraging results on realistic synthetic signals and on real data will be presented at the conferenc

    Multi-Detector Multi-Component spectral matching and applications for CMB data analysis

    Full text link
    We present a new method for analyzing multi--detector maps containing contributions from several components. Our method, based on matching the data to a model in the spectral domain, permits to estimate jointly the spatial power spectra of the components and of the noise, as well as the mixing coefficients. It is of particular relevance for the analysis of millimeter--wave maps containing a contribution from CMB anisotropies.Comment: 15 pages, 7 Postscript figures, submitted to MNRA

    BLAST Observations of the South Ecliptic Pole field: Number Counts and Source Catalogs

    Get PDF
    We present results from a survey carried out by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST) on a 9 deg^2 field near the South Ecliptic Pole at 250, 350 and 500 {\mu}m. The median 1{\sigma} depths of the maps are 36.0, 26.4 and 18.4 mJy, respectively. We apply a statistical method to estimate submillimeter galaxy number counts and find that they are in agreement with other measurements made with the same instrument and with the more recent results from Herschel/SPIRE. Thanks to the large field observed, the new measurements give additional constraints on the bright end of the counts. We identify 132, 89 and 61 sources with S/N>4 at 250, 350, 500 {\mu}m, respectively and provide a multi-wavelength combined catalog of 232 sources with a significance >4{\sigma} in at least one BLAST band. The new BLAST maps and catalogs are available publicly at http://blastexperiment.info.Comment: 25 pages, 6 figures, 4 tables, Accepted by ApJS. Maps and catalogs available at http://blastexperiment.info

    The BLAST Survey of the Vela Molecular Cloud: Physical Properties of the Dense Cores in Vela-D

    Get PDF
    The Balloon-borne Large-Aperture Submillimeter Telescope (BLAST) carried out a 250, 350 and 500 micron survey of the galactic plane encompassing the Vela Molecular Ridge, with the primary goal of identifying the coldest dense cores possibly associated with the earliest stages of star formation. Here we present the results from observations of the Vela-D region, covering about 4 square degrees, in which we find 141 BLAST cores. We exploit existing data taken with the Spitzer MIPS, IRAC and SEST-SIMBA instruments to constrain their (single-temperature) spectral energy distributions, assuming a dust emissivity index beta = 2.0. This combination of data allows us to determine the temperature, luminosity and mass of each BLAST core, and also enables us to separate starless from proto-stellar sources. We also analyze the effects that the uncertainties on the derived physical parameters of the individual sources have on the overall physical properties of starless and proto-stellar cores, and we find that there appear to be a smooth transition from the pre- to the proto-stellar phase. In particular, for proto-stellar cores we find a correlation between the MIPS24 flux, associated with the central protostar, and the temperature of the dust envelope. We also find that the core mass function of the Vela-D cores has a slope consistent with other similar (sub)millimeter surveys.Comment: Accepted for publication in the Astrophysical Journal. Data and maps are available at http://blastexperiment.info

    BLAST: Correlations in the Cosmic Far-Infrared Background at 250, 350, and 500 microns Reveal Clustering of Star-Forming Galaxies

    Full text link
    We detect correlations in the cosmic far-infrared background due to the clustering of star-forming galaxies in observations made with the Balloon-borne Large Aperture Submillimeter Telescope, BLAST, at 250, 350, and 500 microns. We perform jackknife and other tests to confirm the reality of the signal. The measured correlations are well fit by a power law over scales of 5-25 arcminutes, with Delta I/I = 15.1 +/- 1.7%. We adopt a specific model for submillimeter sources in which the contribution to clustering comes from sources in the redshift ranges 1.3 <= z <= 2.2, 1.5 <= z <= 2.7, and 1.7 <= z <= 3.2, at 250, 350, and 500 microns, respectively. With these distributions, our measurement of the power spectrum, P(k_theta), corresponds to linear bias parameters, b = 3.8 +/- 0.6, 3.9 +/- 0.6 and 4.4 +/- 0.7, respectively. We further interpret the results in terms of the halo model, and find that at the smaller scales, the simplest halo model fails to fit our results. One way to improve the fit is to increase the radius at which dark matter halos are artificially truncated in the model, which is equivalent to having some star-forming galaxies at z >= 1 located in the outskirts of groups and clusters. In the context of this model we find a minimum halo mass required to host a galaxy is log (M_min / M_sun) = 11.5 (+0.4/-0.1), and we derive effective biases $b_eff = 2.2 +/- 0.2, 2.4 +/- 0.2, and 2.6 +/- 0.2, and effective masses log (M_eff / M_sun) = 12.9 +/- 0.3, 12.8 +/- 0.2, and 12.7 +/- 0.2, at 250, 350, and 500 microns, corresponding to spatial correlation lengths of r_0 = 4.9, 5.0, and 5.2 +/- 0.7 h^-1 Mpc, respectively. Finally, we discuss implications for clustering measurement strategies with Herschel and Planck.Comment: Accepted for publication in the Astrophysical Journal. Maps and other results available at http://blastexperiment.info

    Map-making in small field modulated CMB polarisation experiments: approximating the maximum-likelihood method

    Full text link
    Map-making presents a significant computational challenge to the next generation of kilopixel CMB polarisation experiments. Years worth of time ordered data (TOD) from thousands of detectors will need to be compressed into maps of the T, Q and U Stokes parameters. Fundamental to the science goal of these experiments, the observation of B-modes, is the ability to control noise and systematics. In this paper, we consider an alternative to the maximum-likelihood method, called destriping, where the noise is modelled as a set of discrete offset functions and then subtracted from the time-stream. We compare our destriping code (Descart: the DEStriping CARTographer) to a full maximum-likelihood map-maker, applying them to 200 Monte-Carlo simulations of time-ordered data from a ground based, partial-sky polarisation modulation experiment. In these simulations, the noise is dominated by either detector or atmospheric 1/f noise. Using prior information of the power spectrum of this noise, we produce destriped maps of T, Q and U which are negligibly different from optimal. The method does not filter the signal or bias the E or B-mode power spectra. Depending on the length of the destriping baseline, the method delivers between 5 and 22 times improvement in computation time over the maximum-likelihood algorithm. We find that, for the specific case of single detector maps, it is essential to destripe the atmospheric 1/f in order to detect B-modes, even though the Q and U signals are modulated by a half-wave plate spinning at 5-Hz.Comment: 18 pages, 17 figures, MNRAS accepted v2: content added (inc: table 2), typos correcte

    Deconvolution of Images from BLAST 2005: Insight into the K3-50 and IC 5146 Star-Forming Regions

    Full text link
    We present an implementation of the iterative flux-conserving Lucy-Richardson (L-R) deconvolution method of image restoration for maps produced by the Balloon-borne Large Aperture Submillimeter Telescope (BLAST). We have analyzed its performance and convergence extensively through simulations and cross-correlations of the deconvolved images with available highresolution maps. We present new science results from two BLAST surveys, in the Galactic regions K3-50 and IC 5146, further demonstrating the benefits of performing this deconvolution. We have resolved three clumps within a radius of 4.'5 inside the star-forming molecular cloud containing K3-50. Combining the well-resolved dust emission map with available multi-wavelength data, we have constrained the Spectral Energy Distributions (SEDs) of five clumps to obtain masses (M), bolometric luminosities (L), and dust temperatures (T). The L-M diagram has been used as a diagnostic tool to estimate the evolutionary stages of the clumps. There are close relationships between dust continuum emission and both 21-cm radio continuum and 12CO molecular line emission. The restored extended large scale structures in the Northern Streamer of IC 5146 have a strong spatial correlation with both SCUBA and high resolution extinction images. A dust temperature of 12 K has been obtained for the central filament. We report physical properties of ten compact sources, including six associated protostars, by fitting SEDs to multi-wavelength data. All of these compact sources are still quite cold (typical temperature below ~ 16 K) and are above the critical Bonner-Ebert mass. They have associated low-power Young Stellar Objects (YSOs). Further evidence for starless clumps has also been found in the IC 5146 region.Comment: 13 pages, 12 Figures, 3 Table
    corecore