178 research outputs found

    Random local strain effects in homovalent-substituted relaxor ferroelectrics: a first-principles study of BaTi0.74Zr0.26O3

    Full text link
    We present first-principles supercell calculations on BaTi0.74Zr0.26O3, a prototype material for relaxors with a homovalent substitution. From a statistical analysis of relaxed structures, we give evidence for four types of Ti-atom polar displacements: along the , , or directions of the cubic unit cell, or almost cancelled. The type of a Ti displacement is entirely determined by the Ti/Zr distribution in the adjacent unit cells. The underlying mechanism involves local strain effects that ensue from the difference in size between the Ti4+ and Zr4+ cations. These results shed light on the structural mechanisms that lead to disordered Ti displacements in BaTi(1-x)Zr(x)O3 relaxors, and probably in other BaTiO3-based relaxors with homovalent substitution.Comment: 5 pages, 4 figure

    Mg-Ti-H thin films for smart solar collectors

    Get PDF
    Mg-Ti-H thin films are found to have very attractive optical properties: they absorb 87% of the solar radiation in the hydrogenated state and only 32% in the metallic state. Furthermore, in the absorbing state Mg-Ti-H has a low emissivity; at 400 K only 10% of blackbody radiation is emitted. The transition between both optical states is fast, robust, and reversible. The sum of these properties highlights the applicability of such materials as switchable smart coatings in solar collector

    Excess-entropy scaling in supercooled binary mixtures

    Get PDF
    Supercooled liquids near the glass transition show remarkable non-Arrhenius transport phenomena, whose origin is yet to be clarified. Here, the authors use GPU molecular dynamics simulations for various binary mixtures in the supercooled regime to show the validity of a quasiuniversal excess-entropy scaling relation for viscosity and diffusion

    Functional impairment of systemic scleroderma patients with digital ulcerations: Results from the DUO registry

    Get PDF

    Demographic, clinical and antibody characteristics of patients with digital ulcers in systemic sclerosis: data from the DUO Registry

    Get PDF
    OBJECTIVES: The Digital Ulcers Outcome (DUO) Registry was designed to describe the clinical and antibody characteristics, disease course and outcomes of patients with digital ulcers associated with systemic sclerosis (SSc). METHODS: The DUO Registry is a European, prospective, multicentre, observational, registry of SSc patients with ongoing digital ulcer disease, irrespective of treatment regimen. Data collected included demographics, SSc duration, SSc subset, internal organ manifestations, autoantibodies, previous and ongoing interventions and complications related to digital ulcers. RESULTS: Up to 19 November 2010 a total of 2439 patients had enrolled into the registry. Most were classified as either limited cutaneous SSc (lcSSc; 52.2%) or diffuse cutaneous SSc (dcSSc; 36.9%). Digital ulcers developed earlier in patients with dcSSc compared with lcSSc. Almost all patients (95.7%) tested positive for antinuclear antibodies, 45.2% for anti-scleroderma-70 and 43.6% for anticentromere antibodies (ACA). The first digital ulcer in the anti-scleroderma-70-positive patient cohort occurred approximately 5 years earlier than the ACA-positive patient group. CONCLUSIONS: This study provides data from a large cohort of SSc patients with a history of digital ulcers. The early occurrence and high frequency of digital ulcer complications are especially seen in patients with dcSSc and/or anti-scleroderma-70 antibodies

    Ab initio calculations of partial molar properties in the single-site approximation

    Get PDF
    We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g., impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation of the composition of an alloy or its nonequivalent parts. We demonstrate that these quantities may be considerably in error if they an obtained in methods based on the single-site approximation for fixed alloy compositions. This error does not reflect a breakdown but rather an inappropriate use of the single-site approximation which is, in fact, found to be sufficiently accurate when properly applied in calculations of partial molar quantities
    corecore