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Ab initio calculations of partial molar properties in the single-site approximation

A. V. Ruban and H. L. Skriver
Center for Atomic-scale Materials Physics and Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 23 October 1996!

We discuss the application of the single-site approximation in calculations of partial molar quantities, e.g.,
impurity solution energy, segregation energy, and effective chemical potential, which are related to a variation
of the composition of an alloy or its nonequivalent parts. We demonstrate that these quantities may be
considerably in error if they are obtained in methods based on the single-site approximation for fixed alloy
compositions. This error does not reflect a breakdown but rather an inappropriate use of the single-site ap-
proximation which is, in fact, found to be sufficiently accurate when properly applied in calculations of partial
molar quantities.@S0163-1829~97!03713-2#

I. INTRODUCTION

The single-site approximation constitutes the basis of the
key approximation in alloy theory: the coherent potential ap-
proximation ~CPA!. Recently, it has been shown that the
CPA may give an accurate estimate of the energetics of ran-
dom alloys provided one includes an approximate descrip-
tion of the charge distribution around an impurity which is
undetermined in the single-site approximation.1 In spite of
this success, there is still some doubt2,3 as to the validity of
the single-site approximation itself. In particular, it has been
shown by Drittleret al.2 that the impurity solution energies
calculated by means of the Green’s function technique in the
single-site approximation may differ substantially from the
values obtained when the perturbation of the neighboring
sites is included. On the basis of these results it has been
concluded that the single-site approximation is not reliable in
general and may lead to considerable errors.2 Since this con-
clusion contradicts the results of Ref. 1, it is of great impor-
tance to find the reason for the apparent disagreement and
perhaps reconcile the two approaches.

There is a second disagreement which at first sight ap-
pears unrelated to the impurity problem: The~100! surface
concentration profiles of a random CuNi alloy obtained in
two recent first-principles calculations differ not only quan-
titatively but also qualitatively. Rubanet al.4 find an oscilla-
tory concentration profile while Pasturelet al.5 find a mono-
tonic profile. The latter type of calculation has been repeated
in a so-called self-consistent determination of the concentra-
tion profile by Drchalet al.,6,7 again resulting in monotonic
profiles. The disagreement between the two types of calcu-
lations appears very surprising in view of the fact that the
same linear muffin-tin orbital8,9 ~LMTO! and CPA methods
are used, the only difference being that Pasturelet al. and
Drchalet al.use the generalized perturbation method~GPM!
to calculate concentration-dependent effective interactions,
while Ruban et al. use the Connolly-Williams method
~CWM! generalized to the case of a surface to calculate
concentration-independent interactions. We note that the
source of the disagreement is not to be found in the type of
interactions used, i.e., concentration dependent or concentra-
tion independent, since it has been shown that they are in
fact directly related.10,11 Hence, it must be found in the de-

tails of the Connolly-Williams or the generalized perturba-
tion methods.

In the present paper we show that the controversies have a
common origin in the way the single-site approximation is
applied in the calculation of partial molar properties such as
the effective chemical potential, the impurity solution en-
ergy, and the segregation energy. In the GPM and similar
methods based on fixed compositions the single-site approxi-
mation leads to a complete neglect of the relaxation of the
electronic structure in the neighborhood of the perturbation.
As already noted by Drittleret al.2 such a neglect may be a
serious approximation, and we will show that this is in fact
the reason for the controversies. Further, we present one so-
lution to the problem of calculating partial molar properties
which involves the application of the CPA in conjunction
with the CWM, as in the work by Rubanet al.,4 whereby the
electronic structure relaxation is naturally included and the
accuracy of the calculations greatly improved.12–14

The paper is organized as follows. In Sec. II we outline
and discuss in the most basic terms the theory which may be
used to calculate partial molar properties from first prin-
ciples. In particular, we emphasize the role of the single-site
approximation. Part of this discussion may appear com-
pletely trivial. However, the points we raise have been over-
looked in the literature for a long time, the most prominent
example being the above-mentioned first-principles calcula-
tions of surface segregation profiles based on effective inter-
actions obtained within the GPM~Refs. 5–7 and 15–17! or
in the tight-binding direct configurational averaging~DCA!
method.18 The task before us is therefore partly pedagogical.
After a discussion of the connection between the two appli-
cations of the single-site approximation in calculations of
partial molar properties we finish by substantiating our view-
point by a numerical investigation of the random CuNi alloy
system which is at the heart of the controversy.

II. CALCULATIONS OF PARTIAL MOLAR PROPERTIES

A. Total energy of a random alloy

Let us consider the simple example of a binary, com-
pletely random alloyA12cBc on a fixed lattice with equiva-
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lent sites and assume that the total energy per atom may be
written in the form resembling the corresponding expression
in the CPA:

Erand~c!5cEB~c!1~12c!EA~c!. ~1!

Here c is the concentration ofB, and the on-site energies
EB(c) and EA(c) are the partial contributions to the total
energy from the alloy components. We refer to this as the
intensive, i.e., per atom, form for the total energy of a ran-
dom alloy.

A decomposition of the total energy of a random alloy
into partial contributions such as Eq.~1! is not possible in
general. However, it exists, for instance, in the atomic sphere
approximation9 ~ASA! in which the total energy of an alloy
with an arbitrary configuration may be written in theexten-
sive, i.e., perN atoms, form

Ẽtot5(
i51

N

e i , ~2!

whereN is the number of atoms in the system ande i is the
local contribution to the total energy from an atom at sitei .
Hence, we may use the ASA or a similar approximation,
which like the ASA is sufficiently accurate in calculations of
total energies as long as the geometry of the underlying lat-
tice is fixed. In this case the on-site energies are determined
as the average quantities

EB~c!5
1

NB
(
i

^e i~c!ci&5^e i
~ i5B!~c!&,

EA~c!5
1

NA
(
i

^e i~c!~12ci !&5^e i
~ i5A!~c!&, ~3!

and the total energy of a random alloy Eq.~1!, may be writ-
ten as

Erand~c!5
1

N(
i

^e i~c!&5
1

N
^Ẽtot~c!&. ~4!

HereNA andNB are the number ofA andB atoms in the
system,N5NA1NB , c5NB /N, ci is an occupation number
taking on the values 1 and 0 depending on whether sitei is
occupied by aB atom or anA atom, respectively, and̂&
designates configurational averaging over ensemble.

B. Impurity solution energy

We may now determine the solution energy of aB atom
in a pureA crystal. This may be obtained in two ways, the
first of which is based on the intensive form~1! of the total
energy of a completely randomA12cBc alloy. From the defi-
nition of a partial molar property we find

Esol
int~c![

dEmix
dc

5
dErand
dc

2EB~1!1EA~0!, ~5!

where

Emix5Erand~c!2@cEB~1!1~12c!EA~0!# ~6!

is the mixing energy of the alloy, andEB(1)5e i(1) and
EA(0)5e i(0) are the total energies per atom of the pure
alloy components. In the dilute limit of a singleB impurity
in pure aA host we find

Esol
int~0!5EB~0!2EB~1!1

dEA~c!

dc U
c50

, ~7!

which we will refer to as the intensive definition of the im-
purity solution energy.

The second expression for the solution energy is based on
the extensive form~1! of the total energy of a single crystal
with N atoms. In this picture the impurity solution energy,
which is the energy it costs to move aB atom from a pure
B crystal into sitei of a pureA crystal, may be obtained as
the difference in total energy of anA crystal with a single
B impurity and that of a the pureA crystal from which one
subtracts the energy per atom,EB(1)5e i(1), of aB atom in
a pureB crystal. We have

Esol
ext~0!5Ẽtot~A1B!2Ẽtot~A!2EB~1!

5EB~0!2EB~1!1(
jÞ i

@e j
~ i5B!2EA~0!#, ~8!

where we have used the fact that in the thermodynamic limit
N→` the energy, of aB atom in a pureA crystal,
e i
( i5B)5EB(0). Note that the summation over the remaining
sites in the second line of Eq.~8! includes the important
relaxation of the electronic structure of the neighboringA
atoms due to their interaction with theB atom at sitei . The
extensive definition~8! is exactly the definition used in the
successful Green’s function calculations by Drittleret al.2 of
the impurity solution energy of the 3d metals in Cu and Ni.

If we compare Eqs.~7! and ~8!, we find the important
relation

dEA~c!

dc Uc505(
jÞ i

@e j
~ i5B!2EA~0!#, ~9!

connecting intensive and extensive quantities. The physical
interpretation of Eq.~9! is transparent: The change of the
on-site energies with concentration is equal to the renormal-
ization of the on-site energies in the whole system with a
single impurity.

We now introduce the single-site approximation which is
the assumption that the perturbation of the electronic struc-
ture caused by the formation of a point defect is confined to
the corresponding defect site; i.e., all sites beyond the defect
site are considered unperturbed. As a result, the last term in
the extensive definition~8! vanishes and the expression for
the impurity solution energy in the single-site Green’s func-
tion technique becomes

Esol
ss-ext~0!5EB

ss~0!2EB~1!. ~10!

Here, the superscript ‘‘ss’’ refers to quantities determined in
the single-site approximation, and obviously
EB
ss(1)5EB(1) andEA

ss(0)5EA(0). If, on theother hand, we
use the intensive definition~7!, we find that the impurity
solution energy in the single-site approximation is
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Esol
ss-int~0!5EB

ss~0!2EB~1!1
dEA

ss~c!

dc
U
c50

. ~11!

It is now seen that while the renormalization of the elec-
tronic structure of the host atoms around the impurity is
completely neglected in the single-site extensive definition
~10! it is in fact taken into account by the last term in the
single-site intensive definition~11!. This means that the ex-
tensive definition of the impurity solution energy breaks
down in the single-site approximation and, as a result, it
must be used with caution. In contrast, the intensive defini-
tion is still valid and the renormalization term may be ob-
tained in the single-site approximation, for instance, by
means of methods based on the CPA, which allow one to
calculate the concentration derivatives of the on-site ener-
gies. Such calculations have been performed by Johnson
et al.19 for the impurity solution energy of Zn in Cu, and
further numerical examples presented in Sec. III show that
the contribution from the renormalization is substantial even
in the case of alloys of neighboring elements in the Periodic
Table.

At this point we should mention that it is possible to in-
clude in an approximate way the renormalization term, even
in the single-site approximation, without calculating the con-
centration derivatives of the on-site energies. For instance, in
the Green’s function calculations by Drittleret al.2 of impu-
rity solution energies the most important contribution to the
renormalization was included in the single-site approxima-
tion by means of Lloyd’s formula20 for the change of the
integrated density of states. In the Lloyd formula all changes
of the local densities of states are implicitly summed over the
infinite crystal volume and as we show in Sec. III D this
compensates the errors of the single-site approximation in
Green’s function calculations to a large degree. However, a
similar compensation does not seem possible when Lloyd’s
formula is used in conjunction with the GPM and similar
methods.

C. Effective chemical potential

Similar to the impurity solution energy, the effective
chemical potential of a completely random alloy at 0 K may
be obtained in two different ways. From the extensive form
of the total energy~2! it may be defined as the difference
between the total energy of the completely random alloy
A12cBc with either an extraB atom or an extraA at site i ,
i.e.,

m~c!ext5^Ẽtotu i5B&2^Ẽtotu i5A&5^e i
~ i5B!~c!&2^e i

~ i5A!~c!&

1(
jÞ i

^e j
~ i5B!~c!&2(

jÞ i
^e j

~ i5A!~c!&5EB~c!

2EA~c!1(
jÞ i

@^e j
~ i5B!~c!&2^e j

~ i5A!~c!&#, ~12!

where ^e j
( i5B)(c)& and ^e j

( i5A)(c)& are the average on-site
energies at sitej in the completely random alloy with sitei
occupied by aB or anA atom, respectively.

The intensive definition of the effective chemical poten-
tial is

m~c! int[
dErand
dc

5EB~c!2EA~c!1c
dEB~c!

dc

1~12c!
dEA~c!

dc
, ~13!

and if we compare with the extensive definition~12!, we find

c
dEB~c!

dc
1~12c!

dEA~c!

dc

5(
jÞ i

@^e j
~ i5B!~c!&2^e j

~ i5A!~c!&#, ~14!

which is a generalization of the relation~9!. Again, the
physical interpretation is transparent: The weighted change
of the on-site energies with concentration is equal to the
renormalization of the total energy of the complete system
due to the interchange of anA and aB atom in some lattice
site. We note that the intensive definition~13! remains un-
changed in the single-site approximation, i.e.,

mss-int~c!5EB
ss~c!2EA

ss~c!1c
dEB

ss~c!

dc
1~12c!

dEA
ss~c!

dc
,

~15!

where the last two terms take into account the renormaliza-
tion of the atoms around the extraA andB atoms positioned
at a particular site in the otherwise completely random alloy.

To arrive at the extensive definition in the single-site ap-
proximation we note that in this case each site occupied by
an alloy component is surrounded solely by the effective
medium which may be defined within the virtual crystal ap-
proximation~VCA!, the averaget-matrix ~ATA ! approxima-
tion, or the CPA.23 This effective medium is homogeneous in
the sense that it does not depend on the position of its sites
relative to the ‘‘defect’’ site. This means that the last two
terms in Eq.~12!, which take into account the renormaliza-
tion of the alloy effective medium due to the presence of an
A or aB atom at the specified ‘‘defect’’ sitei , vanish in the
single-site approximation. As a result

mss-ext~c!5EB
ss~c!2EA

ss~c!, ~16!

and as in the case of the impurity solution energy, the exten-
sive definition of the effective chemical potential breaks
down in the single-site approximation, because the response
of the system to the incorporation of a defect is neglected.

At this point we should mention that the quantitySi
(1)

defined in the concentration wave formalism21,22 is exactly
equal tomss2ext and is also called the ‘‘effective chemical
potential.’’ However,Si

(1) is in fact not a partial molar quan-
tity and is not equivalent to the effective chemical potential
defined in the present work. The main difference comes from
the fact that while we consider the change of the energy of an
alloy due to the interchange of anA and aB atom,Si

(1) is the
change in the total energy of an alloy due to aninfinitessimal
change of the concentration of one of the components at
some particular sitei . In this case it is clear that the contri-
bution from the renormalization of the neighboring sites
vanishes.22
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D. Surface segregation energies

Let us write the Hamiltonian of a system with a surface in
the restricted or canonical scheme, which is the basis for
calculating the concentration-profile-dependent effective
cluster interactions as they are determined in the DCA or
GPM:

H~$cn i%!5E~0!~$cn%!1
1

N(
l i

Ṽl
~1!~$cn%!dcl i

1
1

2N(
l i

(
l8 jÞl i

Ṽl il j
~2! ~$cn%!dcl idcl8 j

1
1

3!N(
l i

(
l8 jÞl i

(
l9kÞl i ;l8 j

Ṽl il8 jl9k
~3!

3~$cn%!dcl idcl8 jdcl9k1•••. ~17!

Here N is the number of atoms in each layer,
dcl i5cl i2cl , cl i the occupation numbers in each layerl
and sitei , cl5^cl i&[(1/N)( icl i the average concentration
of one of the alloy components in layerl, andE(0)($cn%) the
energy of the completely random reference system per atom
in the layer with fixed concentration profile$cn%. Finally,
Ṽl
(1)($cn%), Ṽl il8 j

(2) ($cn%), and Ṽl il8 jl9k
(3) ($cn%) are the

concentration-profile-dependent effective cluster interac-
tions.

As at a fixed alloy concentration profile$cn%,

(
i

dcl i50, ~18!

and therefore the contribution from the on-site terms, i.e.,
Ṽl
(1)($cn%) in Eq. ~17!, vanishes. Nonetheless, one may still

define an on-site termṼl
(1) commonly referred to as a point-

energy interaction, and use Eq.~17! in calculations of con-
centration profiles. This is possible in the case whenṼl

(1) and
other interactions depend weakly on the concentration profile
so that one may vary the concentration profile around the
initial values$cn% and then redefine the interactions in accor-
dance with the new values$cn8%. In this case, the second term
in Eq. ~17! does not vanish for those layersl whose final
values of cl8 differ from the initial ones cl since
(1/N)( idcl i8 5(cl82cl).

The point-energy interactionṼ(1) in Eq. ~17! is defined as
the energy of replacing anA atom by aB atom in a sitei of
thelth layer in the completely random alloy, i.e.,

Ṽl
~1!~$cn%!5

dẼ~$cn%!

dcl i
U

dcl i51

5Ẽ~$cn i%!ucl i51,̂ cl j &5cl ,^cn i &5cn

2Ẽ~$cn i%!ucl i50,̂ cl j &5cl ,^cn i &5cn

5
]E~0!~$cn%!

]cl
, ~19!

where the second line is the extensive definition and the third
line the intensive. We note thatṼl

(1) for lPbulk is the ef-
fective chemical potential of the completely random alloy
A12cBc with c5cl , which is

m~c!5Ṽbulk
~1! ~c!5

dE~0!~c!

dc
5Ṽl

~1!~c!ulPbulk . ~20!

The segregation energy of a completely random alloy is de-
fined in terms of the surface energyEsurf as

El
segr[

dEsurf
dcl

5
]

]cl
FE~0!~$cn%!2m(

l
~cl2c!G

5
]E~0!~$cn%!

]cl
2m. ~21!

If we now make use of Eq.~20!, we find the general relation

El
segr5Ṽl

~1!~$cn%!2Ṽbulk
~1! , ~22!

which links the segregation energy of componentB in the
lth layer to the point-energy interactions.

In the GPM and DCA one determines a point-energy in-
teraction which corresponds to the extensive definition of the
effective chemical potential in the single-site approximation.
Hence,

Ṽ~1!-GPM~c!5mss-ext~c!5EB
ss~c!2EA

ss~c!, ~23!

where the on-site energies are calculated either within the
KKR- or LMTO-CPA methods24 in the case of the GPM or
in the TB-CPA in the case of the DCA. In these methods the
expansion of the total energy in terms of concentration fluc-
tuations on the lattice sites is performed at an alloy compo-
sition fixed at the initial value. Often only ‘‘band energy’’
terms are included in Eq.~23! and charge transfer effect
neglected.

The segregation energy in the GPM and the DCA be-
comes

El
segr-GPM5Ṽl

~1!-GPM~$cn%!2Ṽbulk
~1!-GPM~c!

5El
B-ss~$cn%!2El

A-ss~$cn%!2Ebulk
B-ss~c!

1Ebulk
A-ss~c!, ~24!

which should be compared with the result of using the inten-
sive definition forṼ(1) given in the last line of Eq.~19!, i.e.,

El
segr-ss5El

segr-GPM1(
n8

S cn8

]En8
B-ss

~$cn%!

]cl

1~12cn8!
]En8

A-ss
~$cn%!

]cl
D

1(
nvac

]Envac

vac-ss~$cn%!

]cl
2S c ]EB-ss~c!

]c

1~12c!
]EA-ss~c!

]c
D . ~25!
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Here the sum over atomic layers is divided into a sum over
the surface region,n8, and the vacuum region,nvac, and
Envac

vac-ss($cn%) is the on-site energy of the vacuum layer

nvac.
From Eq.~25! it follows that the segregation energy cal-

culated witin the GPA and DCA does not include the effect
of the renormalization of the electronic structure on the sites
in the neighborhood of the impurity both at the surface and
in the bulk. The questions are therefore the following: How
large is this effect in real alloys, and can the GPM or the
DCA give reliable results for surface segregation energies
and segregation profiles?

III. NUMERICAL ILLUSTRATION:
Cu-Ni RANDOM ALLOYS

To answer the question of the applicability of the GPA
and DCA in calculations of segregation profiles we consider
a random CucNi 12c alloy on an fcc lattice with a fixed lat-
tice parameter of 3.54 Å together with the~100! surface of a
Cu50Ni 50 random alloy. The actual calculations were per-
formed by means of the LMTO-CPA method in conjunction
with a Green’s function technique25 in the scalar-relativistic,
frozen core, and atomic sphere approximations.1,25 Valence
electrons were treated self-consistently within the local den-
sity approximation ~LDA ! with the Perdew-Zunger
parametrization26 of the results of Ceperley and Alder27 for
the exchange-correlation potential and energy. Integration
over the Brillouin zone was performed by the special point
technique28 with 505 k points in the irreducible wedge~1/
48th! of the fcc Brillouin zone in the bulk calculations and
with 36 k points in the irreducible wedge~1/8th! of the
square lattice in the surface calculations. Finally, the
screened-impurity model1 ~SIM! was used to correct the
electrostatic one-electron potential and the total energy by
including charge transfer effects in the single-site LDA cal-
culations. More details of the calculation and most of the
results, e.g., the segregation profile, may be found in Ref. 4.

Although the present type of calculations may treat ran-
dom alloys with large charge transfer effects1 quite accu-
rately, it is important for the accuracy of GPM-type calcula-
tions that these effects are small. In fact, the charge neutrality
condition for the CPA effective medium
cDqA1(12c)DqB50 results in a large concentration de-
pendence of the on-site energiesEA

ss(c) andEB
ss(c) unless the

net charges of the alloy components,DqA and DqB , are
small. Hence, the application of the GPM-type calculations,
which often completely neglects charge transfer effects, to
systems with large net charges would be highly doubtful on
the basis of this alone. However, in the CuNi system the
effective charge transferDq*5uDqCu2DqNiu ~Ref. 29! is
approximately 0.01 electron per atom, assuming equal sphere
radii for Cu and Ni, and the system is expected to be favor-
able for the GPM-type calculations since we find that the
SIM correction to the total energy of the random alloy is
only of the order of 0.15 meV.

A. Effective chemical potential

We first consider the correction

m~c!ss-cor5c
dECu

ss ~c!

dc
1~12c!

dENi
ss~c!

dc
, ~26!

which must be applied to the effective chemical potential in
the extensive definition~16! to include the effect of the
renomalization of the effective medium; cf. Eq.~15!. That is,
we compare the GPM-type calculations with the results of
Rubanet al.4 supplemented by further calculations for the
present work. For convenience we consider the difference
between the on-site energiesECu

ss (c) andENi
ss(c) of Cu and Ni

in the alloy at some Cu concentrationc and their values in
the pure metals,ECu(1) andENi(0), i.e.,

DECu~c!5ECu
ss ~c!2ECu~1!

DENi~c!5ENi
ss~c!2ENi~0!. ~27!

Thereby, the deviation of the total energyEalloy(c) of the
random alloy from the average value of the energies of the
pure alloy components,Eavr(c)5cECu(1)1(12c)ENi(0),
is

DE~c!5Ealloy~c!2Eavr~c!5cDECu
ss ~c!1~12c!DENi

ss~c!,
~28!

which is the function plotted in Fig. 1~a!. In the figure one
observes the very interesting feature that whileDE(c) is
very small over the complete concentration range the on-site

FIG. 1. ~a! The deviations of the total energy of random
CucNi 12c alloys from its average value,DE(c), and the difference
between the on-site energies of Cu and Ni in the alloys and their
values in the pure metals.~b! The correction of the single-site ex-
tensive definitionmss -cor(c) and its on-site contributions.

55 8805Ab initio CALCULATIONS OF PARTIAL MOLAR . . .



energies show a strong concentration dependence with
DENi reaching almost20.3 eV in the Cu-rich alloys. We
find that DE(c) is at most20.012 eV which is in accor-
dance with the very small calculated mixing energy of the
Cu-Ni random alloys of the order of 0.014 eV/atom for an
equiatomic alloy composition. Note thatDE(c) is not equal
to the mixing energy since no volume optimization is per-
formed.

As a result of the strong concentration dependence of the
on-site energies the correction~26! to the single-site exten-
sive definition of the effective chemical potential in CuNi
alloys is non-negligible as shown in Fig. 1~b!. One may ar-
gue that the values seen in the figure are very small com-
pared with the values of the actual effective chemical poten-
tials. For instance, the effective chemical potential of the
equiatomic random alloy is2316.429 13 eV, and even much
larger in the soft-core approximation, while the value of the
correction for this alloy is only20.177 eV. However, the
correction should be compared with, for instance, the impu-
rity solution energies and the segregation energies, which are
of a similar order of magnitude in this system~see below!.
We conclude that even in systems with a small charge
transfer30 the GPM-type calculations of partial molar proper-
ties will have appreciable errors.

B. Solution energy

We now consider the solution energy of Cu in Ni which
we calculate by the CPA method to be 0.15 eV@the experi-
mental value is 0.12 eV~Ref. 31!# and of Ni in Cu which we
calculate to be 0.03 eV@experimental values are 0.03 and
0.06 eV~Refs. 31,32!#. At the same time we find from Fig.
1~b! that the correction to the single-site extensive results is
approximately20.08 eV for Cu in Ni and20.20 eV for Ni
in Cu, i.e., of the same order of magnitude as the solution
energies themselves. Thus, the solution energies of the CuNi
system cannot be calculated in the single-site approximation
without the renormalization term. In the single-site Green’s
function calculations Drittleret al.2 found much smaller er-
rors, i.e.,20.02 and 0.03 eV, than those inferred from Fig.
1~b!. The reason is that these authors used Lloyd’s formula
and as mentioned earlier thereby implicitly included the
renormalization of the band energy term. Had they used the
local summation formula instead of Lloyd’s formula, the dif-
ference would have been much larger and similar to the case
of a V impurity in Cu discussed in their paper.2

C. Surface segregation

The segregation energies are determined as the difference
between point-energy terms and one might therefore expect
some kind of error cancellation in this case. However, such a
cancellation does not occur. In Table I we show the surface
segregation energies for the first three layers of the~100!
surface of a Cu50Ni 50 random alloy calculated by us directly
from Eq. ~25! and in the extensive~or GPM! definition ~24!
compared with the GPM results of Ref. 6.

In Table I we observe that the present GPM results are in
excellent agreement with the GPM results of Drchalet al.6

The two sets of GPM results are, however, not consistent
with those obtained directly from the intensive definition. In
particular, according to the latter, one may expect a strong

segregation of Cu into the first layer and a weaker Ni enrich-
ment of the second layer, i.e., an oscillating concentration
profile, while according to the GPM segregation energies the
concentration profile should be monotonic. Thus, the use of
the GPM point-energy interactions leads to aqualitativeer-
ror in the surface segregation calculations, even in the case
of an alloy system with a small charge transfer, which is
most favorable for the GPM-type calculations.

D. Lloyd’s formula

As found by Drittleret al.2 the application of Lloyd’s for-
mula in the Green’s function technique for isolated impuri-
ties to a large degree takes account of the renomalization of
the electronic structure on the neighboring sites and thereby
improves the accuracy of the calculations. It is often assumed
that a similar improvement may be found if Lloyd’s formula
is used in conjunction with the GPM. Unfortunalely, this is
not the case as we will now show.

According to definition ~see, e.g., Ref. 24! the band-
energy contribution to the point-energy interactions in the
GPM is

Vband
~1!-GPM52EEF

@NB~E!2NA~E!#dE, ~29!

whereNB(E) andNA(E) are the local, integrated densities of
states forA andB atoms in the alloy. The point energies may
be calculated directly from the Green’s function or by means
of Lloyd’s formula. In actual calculations the results of the
two approaches should be the same apart from differences in
angular momentun convergence.33 Hence, if Lloyd’s formula
does not work there should be no difference between
Vband
(1)-GPM and El

segr-GPM. This is illustrated byEl
segr-GPM in

Table I which in the present work is obtained by direct inte-
gration of the Green’s function while Drchalet al.6,7 use
Lloyd’s formula. The difference is at most 0.02 eV and may
be attributed to differences in numerical details.

IV. CONCLUSION

We have shown that computational methods which are
based on the extensive formulation of the total energy and
used in conjunction with the single-site approximation in cal-
culations of partial molar properties of random alloys com-
pletely neglect the renormalization of the host effective me-
dium. The alternative single-site intensive formulation does
not suffer from this deficiency and yields accurate values for
the impurity solution energy, the effective chemical poten-
tial, and the segregation energy. We have estimated the mag-
nitude of the terms missing in the extensive formulation and
find that even in the CuNi alloy system, where charge trans-
fer effects are small and the interactions between alloy com-

TABLE I. The segregation energies for the first three layers of a
~100! surface of a Cu50Ni 50 random alloy~in eV!.

Layer (l) El
segr2ss El

segr2GPM ~this work! El
segr2GPM ~Ref. 6!

1 20.360 20.3018 20.3188
2 0.064 20.0017 20.0027
3 20.004 20.0056 20.0008
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ponents relatively weak, the missing terms are substantial. In
calculations of surface concentration profiles the neglect
leads not only to quantitatively but also to qualitatively in-
correct results, e.g., monotonic rather than oscillatory pro-
files. Therefore, one must be careful in applying techniques
such as the GPM, the DCA, and the technique developed in
Refs. 21 and 22, which are all based on effective interactions
determined in the single-site approximation at a fixed alloy

composition, i.e., corresponding to the extensive formula-
tion, in calculations of partial molar properties of random
alloys.
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