42 research outputs found

    A Big Data and machine learning approach for network monitoring and security

    Get PDF
    In the last decade the performances of 802.11 (Wi-Fi) devices skyrocketed. Today it is possible to realize gigabit wireless links spanning across kilometers at a fraction of the cost of the wired equivalent. In the same period, mesh network evolved from being experimental tools confined into university labs, to systems running in several real world scenarios. Mesh networks can now provide city-wide coverage and can compete on the market of Internet access. Yet, being wireless distributed networks, mesh networks are still hard to maintain and monitor. This paper explains how today we can perform monitoring, anomaly detection and root cause analysis in mesh networks using Big Data techniques. It first describes the architecture of a modern mesh network, it justifies the use of Big Data techniques and provides a design for the storage and analysis of Big Data produced by a large-scale mesh network. While proposing a generic infrastructure, we focus on its application in the security domain

    Characterization of compound 584, an Abl kinase inhibitor with lasting effects

    Get PDF
    Background: Resistance to imatinib is an important clinical issue in the treatment of Philadelphia chromosomepositive leukemias which is being tackled by the development of new, more potent drugs, such as the dual Src/Abl tyrosine kinase inhibitors dasatinib and bosutinib and the imatinib analog nilotinib. In the current study we describe the design, synthesis and biological properties of an imatinib analog with a chlorine-substituted benzamide, namely compound 584 (cmp-584). Design and Methods: To increase the potency, we rationally designed cmp-584, a compound with enhanced shape complementarity with the kinase domain of Abl. cmp-584 was synthesized and characterized in vitro against a panel of 67 serine/threonine and tyrosine kinases using radioactive and enzyme-linked immunosorbent kinase assays. We studied inhibitory cellular activity using Bcr/Abl-positive human cell lines, murine transfectants in proliferation experiments, and a murine xenotransplanted model. Kinase assays on isolated Bcr/Abl protein were also performed. Finally, we used a wash-out approach on whole cells to study the binding kinetics of the inhibitor. Results: cmp-584 showed potent anti-Abl activity both on recombinant protein (IC50: 8 nM) and in cell-based assays (IC50: 0.1-10 nM). The drug maintained inhibitory activity against platelet-derived growth factor receptors and c-KIT and was also active against Lyn (IC50: 301 nM). No other kinase of the panel was inhibited at nanomolar doses. cmp-584 was 20- to 300-fold more active than imatinib in cells. This superior activity was evident in intact cells, in which full-length Bcr-Abl is present. In vivo experiments confirmed the activity of cmp-584. Wash-out experiments showed that short exposure to the drug impaired cell proliferation and Bcr-Abl phosphorylation for a substantially longer period of time than imatinib. Conclusions: The present results suggest a slower off-rate (dissociation rate) of cmp-584 compared to imatinib as an explanation for the increased cellular activity of the former. ©2008 Ferrata Storti Foundation

    SETBP1 induces transcription of a network of development genes by acting as an epigenetic hub

    Get PDF
    SETBP1 variants occur as somatic mutations in several hematological malignancies such as atypical chronic myeloid leukemia and as de novo germline mutations in the Schinzel-Giedion syndrome. Here we show that SETBP1 binds to gDNA in AT-rich promoter regions, causing activation of gene expression through recruitment of a HCF1/KMT2A/PHF8 epigenetic complex. Deletion of two AT-hooks abrogates the binding of SETBP1 to gDNA and impairs target gene upregulation. Genes controlled by SETBP1 such as MECOM are significantly upregulated in leukemias containing SETBP1 mutations. Gene ontology analysis of deregulated SETBP1 target genes indicates that they are also key controllers of visceral organ development and brain morphogenesis. In line with these findings, in utero brain electroporation of mutated SETBP1 causes impairment of mouse neurogenesis with a profound delay in neuronal migration. In summary, this work unveils a SETBP1 function that directly affects gene transcription and clarifies the mechanism operating in myeloid malignancies and in the Schinzel- Giedion syndrome caused by SETBP1 mutations.Peer reviewe

    Integrated Genomic, Functional, and Prognostic Characterization of Atypical Chronic Myeloid Leukemia

    Get PDF
    Atypical chronic myeloid leukemia (aCML) is a BCR-ABL1-negative clonal disorder, which belongs to the myelodysplastic/myeloproliferative group. This disease is characterized by recurrent somatic mutations in SETBP1, ASXL1 and ETNK1 genes, as well as high genetic heterogeneity, thus posing a great therapeutic challenge. To provide a comprehensive genomic characterization of aCML we applied a high-throughput sequencing strategy to 43 aCML samples, including both whole-exome and RNA-sequencing data. Our dataset identifies ASXL1, SETBP1, and ETNK1 as the most frequently mutated genes with a total of 43.2%, 29.7 and 16.2%, respectively. We characterized the clonal architecture of 7 aCML patients by means of colony assays and targeted resequencing. The results indicate that ETNK1 variants occur early in the clonal evolution history of aCML, while SETBP1 mutations often represent a late event. The presence of actionable mutations conferred both ex vivo and in vivo sensitivity to specific inhibitors with evidence of strong in vitro synergism in case of multiple targeting. In one patient, a clinical response was obtained. Stratification based on RNA-sequencing identified two different populations in terms of overall survival, and differential gene expression analysis identified 38 significantly overexpressed genes in the worse outcome group. Three genes correctly classified patients for overall survival

    Risk factors associated with adverse fetal outcomes in pregnancies affected by Coronavirus disease 2019 (COVID-19): a secondary analysis of the WAPM study on COVID-19.

    Get PDF
    Objectives To evaluate the strength of association between maternal and pregnancy characteristics and the risk of adverse perinatal outcomes in pregnancies with laboratory confirmed COVID-19. Methods Secondary analysis of a multinational, cohort study on all consecutive pregnant women with laboratory-confirmed COVID-19 from February 1, 2020 to April 30, 2020 from 73 centers from 22 different countries. A confirmed case of COVID-19 was defined as a positive result on real-time reverse-transcriptase-polymerase-chain-reaction (RT-PCR) assay of nasal and pharyngeal swab specimens. The primary outcome was a composite adverse fetal outcome, defined as the presence of either abortion (pregnancy loss before 22 weeks of gestations), stillbirth (intrauterine fetal death after 22 weeks of gestation), neonatal death (death of a live-born infant within the first 28 days of life), and perinatal death (either stillbirth or neonatal death). Logistic regression analysis was performed to evaluate parameters independently associated with the primary outcome. Logistic regression was reported as odds ratio (OR) with 95% confidence interval (CI). Results Mean gestational age at diagnosis was 30.6+/-9.5 weeks, with 8.0% of women being diagnosed in the first, 22.2% in the second and 69.8% in the third trimester of pregnancy. There were six miscarriage (2.3%), six intrauterine device (IUD) (2.3) and 5 (2.0%) neonatal deaths, with an overall rate of perinatal death of 4.2% (11/265), thus resulting into 17 cases experiencing and 226 not experiencing composite adverse fetal outcome. Neither stillbirths nor neonatal deaths had congenital anomalies found at antenatal or postnatal evaluation. Furthermore, none of the cases experiencing IUD had signs of impending demise at arterial or venous Doppler. Neonatal deaths were all considered as prematurity-related adverse events. Of the 250 live-born neonates, one (0.4%) was found positive at RT-PCR pharyngeal swabs performed after delivery. The mother was tested positive during the third trimester of pregnancy. The newborn was asymptomatic and had negative RT-PCR test after 14 days of life. At logistic regression analysis, gestational age at diagnosis (OR: 0.85, 95% CI 0.8-0.9 per week increase; pPeer reviewe

    An enzyme-linked immunosorbent assay to screen for inhibitors of the oncogenic anaplastic lymphoma kinase

    No full text
    The discovery of novel anti-cancer drugs targeting anaplastic lymphoma kinase (ALK), an oncogenic tyrosine kinase, raises the need for in vitro assays suitable for screening compounds for ALK inhibition. To this aim we have developed and optimized an ALK-specific enzyme-linked immunosorbent assay that employs a novel ALK peptide substrate and purified ALK kinase domain

    Imatinib discontinuation in chronic myeloid leukaemia patients with undetectable BCR-ABL transcript level: A systematic review and a meta-analysis

    No full text
    Purpose Tyrosine kinase inhibitors (TKIs) are the cornerstones of treatment for patients with chronic myeloid leukaemia (CML). In recent years, several studies were conducted to evaluate the safety of TKIs discontinuation. We performed a systematic review of the literature to determine the incidence of CML relapse, to identify possible factors relapse rates and to evaluate the long-term safety in CML patients with stable undetectable BCR-ABL transcript level who discontinued TKIs. Design Studies evaluating TKIs discontinuation in CML patients with undetectable BCR-ABL transcript level were identified by electronic search of MEDLINE and EMBASE database until May 2015. Weighted mean proportion and 95% confidence intervals (CIs) of CML relapse was calculated using a fixed-effects and a random-effects model. Statistical heterogeneity was evaluated using the I2 statistic. Results Fifteen cohort studies, for a total of 509 patients, were included. Nine studies were at low-risk of bias. All 15 studies included only patients on imatinib. Overall weighted mean molecular relapse rate of CML was 51% (95% CI 44\u201358%; I2 = 55). Weighted mean molecular relapse rate at 6-month follow-up was 41% (95% CI 32\u201351%; I2 = 78). Eighty percent of molecular relapses occurred in the first 6 months. All 509 patients were alive at 2-year follow-up and only one patient (0.8%, 95% CI 0.2\u20131.8%; I2 = 0) has progressed to a blastic crisis. Conclusions Our findings suggest that imatinib discontinuation is feasible for the majority of CML patients with stable undetectable BCR-ABL transcript level. Approximately 50% of patients remain therapy-free after imatinib discontinuation. Restarting TKIs therapy was followed by a very high rate of molecular response, with no deaths 2 years after discontinuation
    corecore