675 research outputs found

    A quantitative account of genomic island acquisitions in prokaryotes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Microbial genomes do not merely evolve through the slow accumulation of mutations, but also, and often more dramatically, by taking up new DNA in a process called horizontal gene transfer. These innovation leaps in the acquisition of new traits can take place via the introgression of single genes, but also through the acquisition of large gene clusters, which are termed Genomic Islands. Since only a small proportion of all the DNA diversity has been sequenced, it can be hard to find the appropriate donors for acquired genes via sequence alignments from databases. In contrast, relative oligonucleotide frequencies represent a remarkably stable genomic signature in prokaryotes, which facilitates compositional comparisons as an alignment-free alternative for phylogenetic relatedness.</p> <p>In this project, we test whether Genomic Islands identified in individual bacterial genomes have a similar genomic signature, in terms of relative dinucleotide frequencies, and can therefore be expected to originate from a common donor species.</p> <p>Results</p> <p>When multiple Genomic Islands are present within a single genome, we find that up to 28% of these are compositionally very similar to each other, indicative of frequent recurring acquisitions from the same donor to the same acceptor.</p> <p>Conclusions</p> <p>This represents the first quantitative assessment of common directional transfer events in prokaryotic evolutionary history. We suggest that many of the resident Genomic Islands per prokaryotic genome originated from the same source, which may have implications with respect to their regulatory interactions, and for the elucidation of the common origins of these acquired gene clusters.</p

    Direct detection of methylation in genomic DNA

    Get PDF
    The identification of methylated sites on bacterial genomic DNA would be a useful tool to study the major roles of DNA methylation in prokaryotes: distinction of self and nonself DNA, direction of post-replicative mismatch repair, control of DNA replication and cell cycle, and regulation of gene expression. Three types of methylated nucleobases are known: N(6)-methyladenine, 5-methylcytosine and N(4)-methylcytosine. The aim of this study was to develop a method to detect all three types of DNA methylation in complete genomic DNA. It was previously shown that N(6)-methyladenine and 5-methylcytosine in plasmid and viral DNA can be detected by intersequence trace comparison of methylated and unmethylated DNA. We extended this method to include N(4)-methylcytosine detection in both in vitro and in vivo methylated DNA. Furthermore, application of intersequence trace comparison was extended to bacterial genomic DNA. Finally, we present evidence that intrasequence comparison suffices to detect methylated sites in genomic DNA. In conclusion, we present a method to detect all three natural types of DNA methylation in bacterial genomic DNA. This provides the possibility to define the complete methylome of any prokaryote

    Severe and enduring anorexia nervosa:Update and observations about the current clinical reality

    Get PDF
    Several objectives underlie the current article. First, to review historical diagnostic issues and clinical strategies for treating SE-AN. Second, to provide an overview of recent evidence informed strategies and clinical innovations for the treatment of SE-AN. Third, based on the authors' collective clinical and research experience, we offer eight observations that we believe capture the current clinical experience of patients with SE-AN. Some of these observations represent empirically testable hypotheses, but all are designed to generate a meaningful discussion about the treatment of this group of individuals with eating disorders. Finally, we hope to call clinicians, scientists, professional organizations, advocates, and policy makers to action to attend to critical issues related to the care of individuals with SE-AN. We believe that an international discussion could clarify areas of need for these patients and identify opportunities for clinical innovation that would enhance the lives of individuals with SE-AN and their families

    REVISITING ANNA MOSCOWITZ\u27S KROSS\u27S CRITIQUE OF NEW YORK CITY\u27S WOMEN\u27S COURT: THE CONTINUED PROBLEM OF SOLVING THE PROBLEM OF PROSTITUTION WITH SPECIALIZED CRIMINAL COURTS

    Get PDF
    This article explores New York City\u27s non-traditional, judicially based response to prostitution. This article first recounts the history of New York City’s Women’s Court. It then examines the work of the Midtown Community Court, the “problem-solving court” established in 1993 to address criminal issues, like prostitution, in Midtown Manhattan. It also discusses the renewed concerns about sex work in New York and describe the movement, propelled by modern reformers, to address prostitution through specialty courts. It then contrasts the shared features and attributes of the Women’s Court and Midtown Court models. Finally, the article urges modern reformers to step back from the problem-solving court movement and their call for the creation of more such specialized criminal courts

    Sponge Microbiota are a Reservoir of Functional Antibiotic Resistance Genes

    Get PDF
    Wide application of antibiotics has contributed to the evolution of multi-drug resistant human pathogens, resulting in poorer treatment outcomes for infections. In the marine environment, seawater samples have been investigated as a resistance reservoir; however, no studies have methodically examined sponges as a reservoir of antibiotic resistance. Sponges could be important in this respect because they often contain diverse microbial communities that have the capacity to produce bioactive metabolites. Here, we applied functional metagenomics to study the presence and diversity of functional resistance genes in the sponges Aplysina aerophoba, Petrosia ficiformis and Corticium candelabrum. We obtained 37 insert sequences facilitating resistance to D-cycloserine (n=6), gentamicin (n=1), amikacin (n=7), trimethoprim (n=17), chloramphenicol (n=1), rifampicin (n=2) and ampicillin (n=3). Fifteen of 37 inserts harboured resistance genes that shared <90% amino acid identity with known gene products, whereas on 13 inserts no resistance gene could be identified with high confidence, in which case we predicted resistance to be mainly mediated by antibiotic efflux. One marine-specific ampicillin-resistance-conferring β-lactamase was identified in the genus Pseudovibrio with 41% global amino acid identity to the closest β-lactamase with demonstrated functionality, and subsequently classified into a new family termed PSV. Taken together, our results show that sponge microbiota host diverse and novel resistance genes that may be harnessed by phylogenetically distinct bacteria

    Do PGI integrated farms perform better? The case of the beef farms in Spain

    Full text link
    European rural development policy is gaining in importance through one of its key instruments, the Protected Geographical Indications (PGI) system, which is designed to improve quality standards. Previous research has shown that PGI-certified beef farms tend to be more extensively managed operations that are better adapted to mountainous areas. This paper describes a comparative study of two production systems, one with PGI certification and one without, focusing on a number of economic variables. The results show a positive association between PGI production and profitability. In efficiency terms, non-certified farms show better pure technical efficiency scores, while PGI-certified holdings score higher on scale efficiency

    Comparative genomics highlights symbiotic capacities and high metabolic flexibility of the marine genus Pseudovibrio

    Get PDF
    Pseudovibrio is a marine bacterial genus members of which are predominantly isolated from sessile marine animals, and particularly sponges. It has been hypothesised that Pseudovibrio spp. form mutualistic relationships with their hosts. Here, we studied Pseudovibrio phylogeny and genetic adaptations that may play a role in host colonization by comparative genomics of 31 Pseudovibrio strains, including 25 sponge isolates. All genomes were highly similar in terms of encoded core metabolic pathways, albeit with substantial differences in overall gene content. Based on gene composition, Pseudovibrio spp. clustered by geographic region, indicating geographic speciation. Furthermore, the fact that isolates from the Mediterranean Sea clustered by sponge species suggested host-specific adaptation or colonization. Genome analyses suggest that Pseudovibrio hongkongensis UST20140214-015BT is only distantly related to other Pseudovibrio spp., thereby challenging its status as typical Pseudovibrio member. All Pseudovibrio genomes were found to encode numerous proteins with SEL1 and tetratricopeptide repeats, which have been suggested to play a role in host colonization. For evasion of the host immune system, Pseudovibrio spp. may depend on type III, IV and VI secretion systems that can inject effector molecules into eukaryotic cells. Furthermore, Pseudovibrio genomes carry on average seven secondary metabolite biosynthesis clusters, reinforcing the role of Pseudovibrio spp. as potential producers of novel bioactive compounds. Tropodithietic acid, bacteriocin and terpene biosynthesis clusters were highly conserved within the genus, suggesting an essential role in survival e.g. through growth inhibition of bacterial competitors. Taken together, these results support the hypothesis that Pseudovibrio spp. have mutualistic relations with sponges
    corecore