1,929 research outputs found

    On the generation of some Lie-type geometries

    Get PDF
    Let Xn(K) be a building of Coxeter type Xn=An or Xn=Dn defined over a given division ring K (a field when Xn=Dn). For a non-connected set J of nodes of the diagram Xn, let Γ(K)=GrJ(Xn(K)) be the J-grassmannian of Xn(K). We prove that Γ(K) cannot be generated over any proper sub-division ring K0 of K. As a consequence, the generating rank of Γ(K) is infinite when K is not finitely generated. In particular, if K is the algebraic closure of a finite field of prime order then the generating rank of Gr1,n(An(K)) is infinite, although its embedding rank is either (n+1)2−1 or (n+1)2

    On the generation of some Lie-type geometries

    Get PDF
    Let Xn(K)X_n(K) be a building of Coxeter type Xn=AnX_n=A_n or Xn=DnX_n=D_n or defined over a given division ring KK (a field when Xn=DnX_n=D_n). For a non-connected set JJ of nodes of the diagram XnX_n, let Γ(K)=GrJ(Xn(K))\Gamma(K)=Gr_J(X_n(K)) be the JJ-grassmannian of Xn(K)X_n(K) . We prove that Γ(K)\Gamma(K) cannot be generated over any proper sub-division ring K0K_0 of KK . As a consequence, the generating rank of Γ(K)\Gamma(K) is infinite when KK is not finitely generated. In particular, if KK is the algebraic closure of a finite field of prime order then the generating rank of Gr1,n(An(K))Gr_{1,n}(A_n(K)) is infinite, although its embedding rank is either (n+1)2−1(n+1)^2-1 or (n+1)2(n+1)^2

    Scaling of excitations in dimerized and frustrated spin-1/2 chains

    Full text link
    We study the finite-size behavior of the low-lying excitations of spin-1/2 Heisenberg chains with dimerization and next-to-nearest neighbors interaction, J_2. The numerical analysis, performed using density-matrix renormalization group, confirms previous exact diagonalization results, and shows that, for different values of the dimerization parameter \delta, the elementary triplet and singlet excitations present a clear scaling behavior in a wide range of \ell=L/\xi (where L is the length of the chain and \xi is the correlation length). At J_2=J_2c, where no logarithmic corrections are present, we compare the numerical results with finite-size predictions for the sine-Gordon model obtained using Luscher's theory. For small \delta we find a very good agreement for \ell > 4 or 7 depending on the excitation considered.Comment: 4 pages, 4 eps figures, RevTeX 4 class, same version as in PR

    Process intensification at the expression system level for the production of 1-phosphate aldolase in antibiotic-free E. coli fed-batch cultures

    Get PDF
    To successfully design expression systems for industrial biotechnology and biopharmaceutical applications; plasmid stability, efficient synthesis of the desired product and the use of selection markers acceptable to regulatory bodies are of utmost importance. In this work we demonstrate the application of a set of IPTG-inducible protein expression systems -- harboring different features namely, antibiotic vs auxotrophy marker; two-plasmids vs single plasmid expression system; expression levels of the repressor protein (LacI) and the auxotrophic marker (glyA) -- in high-cell density cultures to evaluate their suitability in bioprocess conditions that resemble industrial settings. Results revealed that the first generation of engineered strain showed a 50% reduction in the production of the model recombinant protein fuculose-1-phosphate aldolase (FucA) compared to the reference system from QIAGEN. The over-transcription of glyA was found to be a major factor responsible for the metabolic burden. The second- and third-generation of expression systems presented an increase in FucA production and advantageous features. In particular, the third-generation expression system is antibiotic-free, autotrophy-selection based and single-plasmid and, is capable to produce FucA at similar levels compared to the original commercial expression system. These new tools open new avenues for high-yield and robust expression of recombinant proteins in E. coli

    Investigating the possibility of leakage detection in water distribution networks using cosmic ray neutrons in the thermal region

    Get PDF
    Water distribution systems can experience high levels of leakage, originating from different sources, such as deterioration due to aging of pipes and fittings, material defects, and corrosion. In addition to causing financial losses and supply problems, leakages in treated water distribution also represent a risk for public health. Despite several techniques for leak detection are already available, there is still a lot of interest in new non-invasive approaches, especially for scenarios where acoustic techniques struggle, such as in noisy environmental conditions. In this work we investigated the possibility of using cosmic ray (CR) neutrons for the detection of underground leakages in water distribution networks, by exploiting the difference in the above ground thermal neutron flux between dry and wet soil conditions. The potential of the technique has been assessed by means of an extensive set of Monte Carlo simulations based on GEANT4, involving realistic scenarios based on the Italian aqueduct design guidelines. Simulation studies focused on sandy soils and results suggest that a significative signal, associated with a leakage, could be detected with a data-taking lasting from a few minutes to a half-hour, depending on the environmental soil moisture, the leaking water distribution in soil, and the soil chemical composition. Finally, a brief description of a new portable and low-cost detector for thermal neutrons, currently under commission, is also presented
    • …
    corecore