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Abstract

Let Xn(K) be a building of Coxeter type Xn = An or Xn = Dn defined over a given division
ring K (a field when Xn = Dn). For a non-connected set J of nodes of the diagram Xn, let
Γ(K) = GrJ(Xn(K)) be the J-grassmannian of Xn(K). We prove that Γ(K) cannot be generated
over any proper sub-division ring K0 of K. As a consequence, the generating rank of Γ(K) is infinite
when K is not finitely generated. In particular, if K is the algebraic closure of a finite field of prime
order then the generating rank of Gr1,n(An(K)) is infinite, although its embedding rank is either
(n+ 1)2 − 1 or (n+ 1)2.
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1. Introduction

We presume that the reader has some acquaintance with buildings and is familiar with basics
of point-line geometry. In case, we refer to Tits [14] for buildings and Shult [13] for point-line
geometries. We only recall the notion of generation in point-line geometries. A subspace of a
point-line geometry Γ = (P,L) is a subset S of the point-set P of Γ such that, for every line ` ∈ L,
if |S ∩ `| > 1 then ` ⊆ S. We say that a subset X of a subspace S generates S, in symbols S = 〈X〉,
if S is the minimum subspace of Γ containing X, namely S is the intersection of all subspaces of Γ
which contain X. We also recall that the generating rank of a point-line geometry Γ = (P,L) is the
number gr(Γ) := min{|X| : X ⊆ P, 〈X〉 = P}.

1.1. Basic definitions and known results
Let X be a class of buildings such that, for every division ring K, at most one (up to isomorphism)

member of X is defined over K. For instance, X can be the class of buildings belonging to a given
simply laced Coxeter diagram or a given Dynkin diagram, possibly of twisted type. With X as above,
let ∆(K) be the member of X defined over K (provided it exists) and, for a nonempty subset J of the
type-set of ∆(K), let GrJ(∆(K)) be the J-grassmannian of ∆(K), regarded as a point-line geometry.
For a sub-division ring K0 of K, suppose that X also contains a member ∆(K0) defined over K0 and
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GrJ(∆(K)) contains GrJ(∆(K0)) as a subgeometry (as it is always the case for the geometries to
be considered in this paper). We say that GrJ(∆(K)) is generated over K0 (K0-generated for short)
if GrJ(∆(K0)), as a set of points of the point-line geometry GrJ(∆(K)), generates GrJ(∆(K)).

Clearly, if GrJ(∆(K)) is K0-generated and GrJ(∆(K0)) is K1-generated for a division ring
K1 < K0, then GrJ(∆(K)) is K1-generated too. It is also clear that if GrJ(∆(K)) is K0-generated
then the generating rank of GrJ(∆(K)) cannot be larger than that of GrJ(∆(K0)). On the other
hand, suppose that every finite set of points of GrJ(∆(K)) belongs to a subgeometry of GrJ(∆(K))
isomorphic to GrJ(∆(K0)) for a finitely generated sub-division ring K0 of K (as it is often the
case). Suppose moreover that K is not finitely generated as a division-ring and that GrJ(∆(K)) is
not K0-generated, for any K0 < K. Then GrJ(∆(K)) has infinite generating rank, as we prove in
Lemma 1.4. In short, obvious links exist between the K0-generation problem and the computation
of generating ranks. Less obviously, some relations also seem to exist between K0-generability and
the existence of the absolutely universal embedding. For instance, a number of grassmannians
GrJ(∆(K)) for which the existence of the absolutely universal embedding is still an open problem,
cannot be generated over any proper sub-division ring K0 of K (see Section 1.3, Remark 1.6).

We shall now briefly summarize what is currently known about K0-generation. For Xn a simply
laced Coxeter diagram of rank n or a Dynkin diagram of rank n (but not of twisted type) and a
division ring K (a field if Xn 6= An), let Xn(K) be the unique building of type Xn defined over K.
In particular, Bn(K) and Cn(K) are the buildings associated to the orthogonal group O(2n+ 1,K)
and the symplectic group Sp(2n,K) respectively.

Suppose firstly that GrJ(Xn(K)) is spanned by GrJ(A) for an apartment A of Xn(K) (for short,
GrJ(Xn(K)) is spanned by an apartment). For every sub-division ring K0 of K, the geometry GrJ(A)
is contained in a subgeometry of GrJ(Xn(K)) isomorphic to GrJ(Xn(K0)). Hence GrJ(Xn(K)) is
K0-generated for any K0 ≤ K. In particular, GrJ(Xn(K)) is generated over the prime subfield of K.

It is known (Cooperstein and Shult [8], Blok and Brouwer [1]) that the following grassmannians
are generated by apartments, where we take the integers 1, 2, . . . , n as types as usual but when
Xn = Dn, according to the notation adopted in Section 2.1, we replace n− 1 and n with + and −:
Grk(An(K)) for 1 ≤ k ≤ n; Gr1(Dn(K)) and Gr+(Dn(K)) as well as Gr−(Dn(K)); Gr1(Cn(K)) and
Grn(Bn(K)) but with char(K) 6= 2 in both cases; Gr1(E6(K)), Gr6(E6(K))) and Gr1(E7(K)) (the
nodes of the E7-diagram being labeled as in [8]). Therefore, all above mentioned grassmannians
are generated over the prime subfield of K. It is easily seen that the same holds for Gr1(Bn(K)),
even if this geometry is not spanned by any apartment. It is likely that if char(K) 6= 2 then, for
every i ≤ n, the i-grassmannian Gri(Cn(K)) is generated over the prime subfield of K, but we are
not aware of any explicit proof of this claim.

We now turn to Gr1,n(An(K)). This geometry is interesting in its own right. When K is a
field it is known as the long root geometry for SL(n+ 1,K). In [2] it is proved that if n > 2 then
Gr1,n(An(K)) is not K0-generated, for any proper sub-division ring K0 of K (see also [6, Theorem
5.10] for an alternative proof in the special case where n = 3 and K is a field). However, when K
is a field and K = K0(a1, . . . , at) for suitable elements a1, . . . , at ∈ K \K0, then Gr1,n(An(K)) can
be generated by adding at most t elements to Gr1,n(An(K0)) (Blok and Pasini [2]). In particular,
when K is finite, (n+ 1)2 points are enough to generate Gr1,n(An(K0)). Indeed, in this case K is
a simple extension of its prime subfield K0 and the generating rank of Gr1,n(An(K0)) is equal to
(n+ 1)2 − 1 (Cooperstein [7]).

Not much is known on Grk(Bn(K)) for 1 < k < n and Grk(Dn(K)) for 1 < k ≤ n − 2.
Probably, what makes these cases so difficult to investigate is the fact that the special case
Gr1,3(A3(K)) ∼= Gr+,−(D3(K)) of Gr1,n(An(K)) somehow enters the game in any attempt to
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compute the generating rank of Grk(Bn(K)) or Grk(Dn(K)) and, as we have seen above, as far
as generation is concerned, Gr1,n(An(K)) can behave wildly. Nevertheless, in [6] we have shown
that for K = F4,F8 or F9 the grassmannians Gr2(Bn(K)) (n ≥ 3) and Gr2(Dn(K)) (n > 3) are
generated over the corresponding prime subfields F2 or F3. The generating ranks of Gr2(Bn(K0))
and Gr2(Dn(K0)), for K0 a finite field of prime order, are known to be equal to

(
2n+1

2

)
and

(
2n
2

)
respectively (Cooperstein [7]). Hence

(
2n+1

2

)
and

(
2n
2

)
are the generating ranks of Gr2(Bn(K)) and

Gr2(Dn(K)) respectively, with K as above.

1.2. Main results
We state in this subsection the main results of this paper. We refer to Section 2 or to [11] and

[4] for the notation and further details on the grassmannians we are dealing with. The following, to
be proved in Section 3, is our first main result in this paper:

Theorem 1.1. For a division ring K, let Γ(K) be one of the following: Gr1,n(An(K)) for n ≥ 3;
Gr+,−(Dn(K)), n ≥ 3; Gr1,+,−(Dn(K)) with n ≥ 4; Gr1,−(Dn(K)) for n ≥ 4. Then Γ(K) is not
K0-generated for any proper sub-division ring K0 of K.

As said in Section 1.1, the case of Gr1,n(An(K)) has been already considered in [2], but the proof
we shall give in this paper is different and simpler than that of [2]. Theorem 1.1 also contains a
proof of a conjecture presented in [6, Remark 5.11].

Corollary 1.2. The (n − 1)-grassmannian Grn−1(B
+
n (K)) of the top-thin polar space B+

n (K) =
Gr1(Dn(K)) is not K0-generated for any proper subfield K0 of K.

Seemingly, this corollary is an obvious consequence of Theorem 1.1 and the isomorphism
Grn−1(B

+
n (K)) ∼= Gr+,−(Dn(K)). However its proof is not so trivial as one might believe; we will

give it in Section 3.2. As we shall see in Section 3.3, Theorem 1.1 admits the following far reaching
generalization:

Theorem 1.3. Let Γ(K) be either GrJ(An(K)) or GrJ(Dn(K)), with J a non-connected set of nodes
of the diagram An or Dn respectively. Then Γ(K) is not K0-generated, for any proper sub-division
ring K0 of K.

1.3. Applications to generating ranks and embeddings
Given a point-line geometry Γ = (P,L), a (full) projective embedding e : Γ → PG(V ) of Γ

(henceforth often called simply an embedding of Γ, for short) is an injective map e : P → PG(V )
from the point-set P of Γ to the set of points of the projective space PG(V ) of a vector space
V , such that for every line ` ∈ L of Γ the set e(`) := {e(p) : p ∈ `} is a projective line of PG(V )
and e(P) spans PG(V ). We put dim(e) := dim(V ), calling dim(e) the dimension of e. If K is the
underlying division ring of V , we say that e is defined over K, also that e is a K-embedding. If Γ
admits a projective embedding we say that Γ is projectively embeddable (also embeddable, for short).
If e : Γ → PG(V ) and e′ : Γ → PG(V ′) are two K-embeddings of Γ we say that e dominates e′ if
there is a K-semilinear mapping ϕ : V → V ′ such that e′ = ϕ · e. If ϕ is an isomorphism then we
say that e and e′ are isomorphic. Following Tits [14], we say that an embedding e is dominant if,
modulo isomorphisms, it is not dominated by any embedding other than itself. Every K-embedding
e of Γ admits a hull ẽ, uniquely determined up to isomorphism and characterized by the following
property: ẽ dominates all K-embeddings of Γ which dominate e (see Ronan [12]). Accordingly, an
embedding is dominant if and only if it is the hull of at least one embedding; equivalently, if and
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only if it is its own hull. Finally, an embedding ẽ of Γ is absolutely universal (henceforth called just
universal, for short) if it dominates all embeddings of Γ. In other words, Γ admits the universal
embedding if and only if all of its embeddings have the same hull, that common hull being the
universal embedding of Γ. Note that this forces all embeddings of Γ to be defined over the same
division ring. Note also that the universal embedding, if it exists, is homogeneous, an embedding e
of Γ being homogeneous if eg ∼= e for every automorphism g of Γ. The embedding rank er(Γ) of an
embeddable geometry Γ is defined as follows:

er(Γ) := sup{dim(ε) : ε projective embedding of Γ}.

Obviously, if Γ admits the universal embedding ẽ then er(Γ) = dim(ẽ), but er(Γ) is defined even if
no embedding of Γ is universal. If e : Γ → PG(V ) is an embedding of Γ = (P,L) then stretching
a line in Γ through two collinear points p, q ∈ P corresponds to forming the span 〈v, w〉 ⊆ V of
any two non-zero vectors v ∈ e(p) and w ∈ e(q). If X ⊆ P generates Γ then P = ∪∞

n=0Xn where
X0 := X and Xn+1 := ∪p,q∈Xn

〈p, q〉Γ. Consequently, if we select a non-zero vector vp ∈ e(p) for
every point p ∈ X then {vp}p∈X spans V . This makes it clear that |X| ≥ dim(e). Accordingly,

dim(e) ≤ gr(Γ). (1)

Therefore, if gr(Γ) is finite and dim(e) = gr(Γ) then e is dominant (hence universal, if Γ admits the
universal embedding). In any case, (1) implies the following:

er(Γ) ≤ gr(Γ). (2)

In fact the equality er(Γ) = gr(Γ) holds for many embeddable geometries, but not for all of them.
For instance Heiss [9] gives an example where gr(Γ) = er(Γ) + 1. The example of [9] looks fairly
artificial. A more natural example, where er(Γ) is finite but gr(Γ) is infinite, is given by Theorem 1.5,
to be stated below. That theorem will be obtained in Section 4 with the help of the following lemma.
In order to properly state it, we recall that a division ring K is finitely generated if it is generated as
a division ring by a finite subset X ⊆ K, namely no proper sub-division ring of K contains X. For
instance, an algebraic extension of a finite field of prime order Fp is finitely generated if and only if
it is finite, in which case it is a simple extension of Fp. On the other hand, no algebraically closed
field is finitely generated.

Lemma 1.4. Let Γ(K) be either GrJ(An(K)) or GrJ(Dn(K)) for a set of types J non-connected as
a set of nodes of An or Dn. Suppose that K is not finitely generated. Then the generating rank of
Γ(K) is infinite.

Lemma 1.4 will be obtained in Section 4 as a consequence of Theorem 1.3. By exploiting it we
will obtain the following:

Theorem 1.5. Let Fp be a finite field of prime order and Fp its algebraic closure. Then, for n ≥ 3,
the geometry Gr1,n(An(Fp)) has infinite generating rank but its embedding rank is equal to either
(n+ 1)2 − 1 or (n+ 1)2.

Remark 1.6. It is well known that if K is a field then Gr1,n(An(K)) admits an (n + 1)2 − 1
dimensional embedding, say eLie, in (the projective space of) the space of square matrices of order
n+ 1 with entries in K and null trace (see e.g. Blok and Pasini [3]; the choice of the symbol eLie for
this embedding is motivated by the fact that it affords the representation of the group SL(n+ 1,K)
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in its action on its own Lie algebra). However Gr1,n(An(K)) does not satisfy the sufficient conditions
of Kasikova and Shult [10] for the existence of the universal embedding. So, we do not know if it
always admits the universal embedding, let alone if eLie is universal. A complete answer is known
only when K is a prime field. In this case eLie is indeed universal (Blok and Pasini [3, Section 3]). A
bit less is known when K is a number field or a perfect field of positive characteristic; in this case
eLie dominates all homogeneous embeddings of Gr1,n(An(K)) (Völklein [15]). As for the remaining
geometries of Theorem 1.1, namely Gr+,−(Dn(K)), Gr1,+,−(Dn(K)) and Gr1,−(Dn(K)), they too
are embeddable (see [3]) and, when K is a prime field, they admit the universal embedding (Blok
and Pasini [3, Section 4]), even if none of them satisfies the conditions of Kasikova and Shult [10].

Remark 1.7. The geometry ∆+
2 of [5] with n = 3 is the same as Gr1,3(A3(F)). According to the

above, Lemma 4.8 of [5], which deals with that geometry and its Weyl embedding ε+2 (which is the
same as eLie), might possibly be wrong as stated. It should be corrected as follows: when n = 3 and
F is a perfect field of positive characteristic or a number field, then ε̃+2 dominates all homogeneous
embeddings of ∆+

2 .

Remark 1.8. In our survey of embeddings we have stuck to full projective embeddings, but in the
proof of Theorem 1.5 we shall deal also with lax embeddings. Lax projective embeddings are defined
in the same way as full projective embeddings but for replacing the condition that e(`) is a line
of PG(V ) with the weaker condition that e(`) spans a line of PG(V ), for every line ` of Γ. Many
authors also require that no two lines of Γ span the same line of PG(V ), but in view of our needs in
this paper we can safely renounce that requirement. The only fact relevant for us is that inequality
(1) holds true even if e is lax, as it is clear from the way we have obtained it.

2. Preliminaries

2.1. Setting and notation
We refer to [11, Chapter 5] for the definition of the J-grassmannian GrJ(∆) of a geometry

∆. We recall that when ∆ satisfies the so-called Intersection Property (which is always the case
when ∆ is a building) then GrJ(∆) is the same as the J-shadow space of ∆ as defined by Tits [14,
Chapter 12]. According to [11] (and [14]), the J-grassmannian of a geometry ∆ is a geometry with a
string-shaped diagram graph and the same rank as ∆, but in this paper, following Buekenhout and
Cohen [4, §2.5], we shall mostly regard it as a point-line geometry, with the J-flags of ∆ taken as
points, while the lines are the flags of ∆ of type (J \ {j})∪ fr(j) for j ∈ J , where fr(j) stands for the
set of types adjacent to j in the diagram of ∆; a point and a line of GrJ(∆) are incident precisely
when they are incident as flags of ∆. So, the lines of GrJ(∆) are particular flags of ∆. This setting
will indeed be helpful in some respects but it forces to distinguish between a line and its set of
points and this distinction often ends in a burden for the exposition; we will often neglect it. This is
a harmless abuse. Indeed only grassmannians of buildings are considered in this paper; buildings
satisfy the Intersection Property and, if that property holds in a geometry ∆, then no two lines of
GrJ(∆) have the same points (even better: no two lines of GrJ(∆) have two points in common).
As in Section 1.1, given a division ring K, we denote by An(K) the building of type An defined
over K. Similarly, if the division ring K is a field (namely, is commutative) then Dn(K) stands for
the building of type Dn defined over K. We allow n = 3 in Dn. So, D3 = A3. Nevertheless, when
writing D3(K) we always understand that K is a field, for consistency of notation. Let Xn stand for
either An or Dn. It is well known that the elements of Xn(K) can be identified with suitable vector
subspaces of a vector space V over K of dimension either n+1 or 2n according to whether Xn = An
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or Xn = Dn. Similarly, given a proper sub-division ring K0 of K, the building Xn(K0) is realized in
a vector space V0 over K0, of the same dimension as V . We can always assume that V0 is the set of
K0-linear combinations of the vectors of a selected basis E of V , so that V is obtained from V0 by
scalar extension from K0 to K. Thus, with E suitably selected when Xn = Dn, the building Xn(K0)
is turned into a subgeometry of Xn(K) (see Sections 2.4 and 2.5 for more details). Accordingly,
for every subset J of the set of nodes of the diagram Xn, the J-grassmannian GrJ(Xn(K0)) can
be regarded as a subgeometry of GrJ(Xn(K)). Our main goal in this paper is to show that, if J
consists of extremal nodes of Xn and |J | > 1 then GrJ(Xn(K0)) does not generate GrJ(Xn(K)).
We firstly consider the {1, n}-grassmannian Gr1,n(An(K)) of An(K); see Fig. 1.

Gr1,n(An) :

1 2 3 n− 1 n

Figure 1: The {1, n}-grassmannian of An

The points of Gr1,n(An(K)) are flags of type {1, n} in An(K); its lines are flags of type either {2, n}
or {1, n− 1}; a point p and a line ` are incident if and only if p ∪ ` is a flag of An(K). Turning to
Dn, we label the nodes of this diagram as in Fig. 2.

1 2 3 n− 3 n− 2
+

−

Figure 2: Labeling of types for buildings of type Dn

We are interested in the J-grassmannians GrJ(Dn(K)), where J = {+,−} or J = {1,+,−} or
J = {1,−} (we can omit the case J = {1,+} since Gr1,+(Dn(K)) ∼= Gr1,−(Dn(K))); see Fig. 3.
Explicitly, the points of Gr+,−(Dn(K)) are the flags of Dn(K) of type {+,−} while the lines are
the flags of types {n− 2,+} and {n− 2,−} with incidence between a point p and a line ` given by
the condition that p ∪ ` must be a flag of Dn(K). As for Gr1,+,−(Dn(K)), its points are the flags of
type {1,+,−}, and the lines are the flags of type {2,+,−}, {1, n− 2,+} or {1, n− 2,−}; incidence
is defined as above. Finally, the points of Gr1,−(Dn(K)) are the flags of type {1,−} and the lines
are the flags of type either {2,−} or {1, n − 2}. Note that when n = 3, since D3(K) ∼= A3(K),
we have Gr1,3(A3(K)) ∼= Gr+,−(D3(K)). In any case, Gr+,−(Dn(K)) ∼= Grn−1(B

+
n (K)), where

B+
n (K) := Gr1(Dn(K)) is the 1-grassmannian of Dn(K) (but regarded as a geometry of rank n),

namely the top-thin polar space associated to the group O+(2n,K); see Fig. 4.
In the following we shall add more details on the grassmannians introduced before. In particular,

we shall better explain in which sense GrJ(An(K)) and GrJ(Dn(K)) contain GrJ(An(K0)) and
GrJ(Dn(K0)) for a sub-division ring K0 of K.
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Gr+,−(Dn) :

1 2 3 n− 3 n− 2
+

−

Gr1,+,−(Dn) :

1 2 3 n− 3 n− 2
+

−

Gr1,−(Dn) :

1 2 3 n− 3 n− 2
+

−

Figure 3: Geometries associated to buildings of type Dn

Grn−1(B
+
n ) :

1 2 3 n− 2 n− 1 n

Figure 4: Geometry Grn−1(B
+
n (K)) ∼= Gr+,−(Dn(K))
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2.2. The geometry An(K) and its grassmannian Gr1,n(A(K))

Let An(K) be a geometry of type An defined over a division ring K, with n ≥ 3. Explicitly,
An(K) ∼= PG(Vn+1(K)) for a (n+ 1)-dimensional right K-vector space Vn+1(K). For i = 1, 2, . . . , n
the elements of An(K) of type i are the i-dimensional subspaces of Vn+1(K), with symmetrized
inclusion as the incidence relation. As customary we call the elements of An(K) of type 1, 2 and n
points, lines and hyperplanes respectively. The elements of type n− 1 will be called sub-hyperplanes.
Note that, when n = 3, lines and sub-hyperplanes are the same objects.

Turning to Gr1,n(An(K)), its points are the point-hyperplane flags (p,H) of An(K). Its lines,
regarded as sets of points, are of either of the following two types:

`p,S := {(p,X) : X hyperplane, X ⊃ S} for a (point, sub-hyperplane) flag (p, S). (3)
`L,H := {(x,H) : x a point, x ⊂ L}, for a line-hyperplane flag (L,H). (4)

2.3. Dn(K) and GrJ(Dn(K)) for J = {+,−}, {1,−} or {1,+,−}
Let K be a field and V2n(K) a vector space of dimension 2n over K, with n ≥ 3. Consider a

non-degenerate quadratic form q on V2n(K) of Witt index n. As in Section 2.1, let B+
n (K) be the

polar space associated to q, namely the (weak) building of rank n whose elements are the vector
subspaces of V2n(K) that are totally singular with respect to q, with their dimensions taken as types.
The elements of B+

n (K) of dimension 1 are called points and those of dimension 2 lines.
It is well known that we can “unfold” B+

n (K) as to obtain a building Dn(K) of type Dn (see e.g.
Tits [14, Chapter 7]). Explicitly, let ∼ be the equivalence relation on the set of all n-dimensional
subspaces of B+

n (K) defined as follows: X ∼ Y if and only if X ∩ Y has even codimension in X
(equivalently, in Y ). Let S+ and S− be the two equivalence classes of ∼. Take {1, 2, . . . , n−2,+,−}
as the set of types. For 1 ≤ i ≤ n− 2 the i-elements of B+

n (K) are the elements of Dn(K) of type
i and the elements of S+ and S− are given types + and − respectively. The (n− 1)-elements of
B+

n (K) are dropped (but we can recover them as flags of type {+,−}). Incidence between elements
of different types {i, j} with {i, j} 6= {+,−} is symmetrized inclusion; if X ∈ S+ and Y ∈ S− then
X is incident with Y if and only if dim(X ∩ Y ) = n− 1.

It is clear from the way Dn(K) is defined that the 1-grassmannian Gr1(Dn(K)) of Dn(K),
regarded as a geometry of rank n, is just the same as B+

n (K). So, we can go back and forth from
Dn(K) to B+

n (K) as if they were the same object. In the sequel we will sometimes avail ourselves of
this opportunity, when profitable.

Turning to grassmannians, Gr+,−(Dn(K)) is the point-line geometry whose points are the flags
(M1,M2) of Dn(K) of type (+,−) and whose lines are of the following two forms:

`U,M1
:= {(M1, X) : X ∈ S−, M1 ∩X ⊃ U} with (U,M1) a flag of type (n− 2,+); (5)

`U,M2 := {(X,M2) : X ∈ S+, X ∩M2 ⊃ U} with (U,M2) a flag of type (n− 2,−). (6)

Recall that the points of the grassmannian Grn−1(B
+
n (K)) of B+

n (K) are the (n− 1)-dimensional
subspaces of V2n(K) totally singular for the quadratic form q and the lines are the sets of the form
`X,M := {Y : X ⊂ Y ⊂ M} where dim(X) = n− 2, dim(M) = n, X ⊂ M and M is totally singular.
Every point X of Grn−1(B

+
n (K)) is the intersection X = M1 ∩M2 of a unique pair {M1,M2} of

n-dimensional totally singular subspaces, which necessarily form a (+,−)–flag of Dn(K). Conversely,
for every (+,−)–flag (M1,M2) of Dn(K), the intersection X = M1∩M2 is a point of Grn−1(B

+
n (K)).

A bijecive mapping ι is thus naturally defined from the set of points of Grn−1(B
+
n (K)) onto the set of

points of Gr+,−(Dn(K)). The mapping ι induces a bijection from the set of lines of Grn−1(B
+
n (K))

8



onto the set of lines of Gr+,−(Dn(K)). In fact, if `X,M is a line of Grn−1(B
+
n (K)) then ι(`X,M ) is

the line of Gr+,−(Dn(K)) denoted by the very same symbol `X,M and it has either form (5) or (6)
according to whether M belongs to S+ or S−. To sum up, Grn−1(B

+
n (K)) ∼= Gr+,−(Dn(K)).

The grassmannian Gr1,−(Dn(K)) is the point-line geometry where the points are the flags (p,M)
of Dn(K) of type (1,−) and the lines are as follows:

`p,U := {(p,X) : X ∈ S−, X ⊃ U} with (p, U) a flag of type (1, n− 2); (7)
`L,M := {(x,M) : dim(x) = 1, x ⊂ L} with (L,M) a flag of type (2,−). (8)

The grassmannian Gr1,+,−(Dn(K)) is the point-line geometry where the points are the flags
(p,M1,M2) of Dn(K) of type (1,+,−); the lines are as follows:

`L,M1,M2 := {(p,M1,M2) : dim(p) = 1, p ⊂ L} with (L,M1,M2) a flag of type (2,+,−); (9)
`p,U,M1

:= {(p,M1, X) : X ∈ S−, X ⊃ U} with (p, U,M1) a flag of type (1, n− 2,+); (10)
`p,U,M2

:= {(p,X,M2) : X ∈ S+, X ⊃ U} with (p, U,M2) a flag of type (1, n− 2,−). (11)

2.4. The subgeometry GrJ(An(K0)) of GrJ(An(K)) for K0 ≤ K
Let E be a basis of Vn+1(K) and K0 a sub-division ring of K. We say that a vector v ∈ Vn+1(K)

is K0-rational respect to E (also K0-rational for short, when the basis E is clear from the context) if
v is a linear combination of vectors of E with coefficients in K0. The set of K0-rational vectors (with
respect to E) is a K0-vector space, henceforth denoted Vn+1,E(K0). For a subspace X of Vn+1(K),
let X0 := X ∩ Vn+1,E(K0). Clearly, X0 is a subspace of Vn+1,E(K0). We say that X is K0-rational
with respect to E (also K0-rational for short) if X0 spans X (in Vn+1(K)); in other words X, as
a subspace of Vn+1(K), admits a basis formed by K0-rational vectors. If this is the case, then X
and X0 have the same dimension (in Vn+1(K) and Vn+1,E(K0) respectively). Indeed the rank of a
matrix M with entries in K0 does not change if M is regarded as matrix with entries in K).

Clearly, the sum of two K0-rational subspaces of Vn+1(K) is still K0-rational. Similarly,

Lemma 2.1. The intersection of two K0-rational subspaces is still K0-rational.

Proof. Let X0, Y0 be two subspaces of Vn+1,E(K0) and X,Y be their spans in Vn+1(K). Then
X ∩ Y contains the span Z of X0 ∩ Y0 in Vn+1(K). We must prove that X ∩ Y = Z. Clearly,
dim(X) = dim(X0) and dim(Y ) = dim(Y0). Moreover dim(X + Y ) = dim(X0 + Y0). Hence

dim(X ∩ Y ) = dim(X) + dim(Y )− dim(X + Y ) =

dim(X0) + dim(Y0)− dim(X0 + Y0) = dim(X0 ∩ Y0) = dim(Z).

Therefore X ∩ Y = Z.

The following is now obvious:

Proposition 2.2. The K0-rational elements of An(K) form a geometry An,E(K0) ∼= An(K0).

In view of Proposition 2.2, we can freely identify An(K0) with An,E(K0), thus regarding An(K0)
as a subgeometry of An(K). The flags of An(K0) are thus identified with the K0-rational flags of
An(K), namely the flags of An(K) all elements of which are K0-rational (with respect to the selected
basis E of Vn+1(K)). Accordingly, for ∅ 6= J ⊆ {1, 2, . . . , n} the J-grassmannian GrJ(An(K0)) of
An(K0) is identified with the subgeometry GrJ,E(An(K0)) of GrJ(An(K)) formed by the K0-rational
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points and lines of GrJ(An(K)), namely the points and lines of GrJ(An(K)) which are K0-rational
as flags of An(K).

Henceforth, by a harmless little abuse, we will always regard GrJ(An(K0)) as the same as
GrJ,E(An(K0)), thus referring to the span of GrJ(An(K0)) in GrJ(An(K)), as we have done in the
Introduction, while in fact we mean the span of GrJ,E(An(K0)).

The next proposition states that, regarding GrJ(An(K0)) as a subgeometry of GrJ(An(K)), the
collinearity graph of GrJ(An(K0)) is just the graph induced on its point-set by the collinearity graph
of GrJ(An(K)).

Proposition 2.3. A line of GrJ(An(K)) is K0-rational if and only if at least two of its points are
K0-rational.

Proof. The ‘only if’ part of this claim easily follows from the isomorphism of the geometries
GrJ,E(An(K0)) ∼= GrJ(An(K0)). Turning to the ‘if’ part, given j0 ∈ J , let L be a flag of An(K) of
type (J \ {j0})∪ fr(j0) and let P and P ′ be two distinct J-flags of An(K) incident with L. We must
prove that if both P and P ′ are K0-rational then L is also K0-rational. There are three cases to
examine: J contains elements j < j0 as well elements j′ > j0; j0 ≤ j for every j ∈ J ; j0 ≥ j for
every j ∈ J . We shall examine only the first case, leaving the remaining two (easier) cases to the
reader.

With j0 as in the first case, the flag L has type (J \ {j0}) ∪ {j0 − 1, j0 + 1} and contains
Q := P ∩ P ′, which is a flag of type J \ {j0}. Moreover, there are distinct j0-subspaces S, S′ of
Vn+1(K) incident with L such that P = Q ∪ {S} and P ′ = Q ∪ {S′}. As S and S′ are incident with
L, the elements of L of type j0 − 1 and j0 + 1 coincide with S ∩ S′ and S + S′ respectively, namely
L = Q ∪ {S ∩ S′, S + S′}. By assumption, P and P ′ are K0-rational. Hence Q = P ∩ P ′ as well as
S and S′ are K0-rational. If j0 − 1 ∈ J then S ∩ S′ ∈ Q, hence S ∩ S′ is K0-rational. Otherwise
S ∩ S′ is K0-rational by Lemma 2.1. Similarly, S + S′ is K0-rational. Thus, all elements of L are
K0-rational, namely L is K0-rational.

2.5. The subgeometry GrJ(Dn(K0)) of GrJ(Dn(K)) for K0 ≤ K
Let K0 be a subfield of K. Let q : V2n(K) → K be the quadratic form considered in Section 2.3.

Without loss of generality we can assume to have chosen the basis E = (e1, . . . , e2n) of V2n(K) in
such a way that q admits the following canonical expression with respect to E:

q(x1, . . . , x2n) = x1x2 + · · ·+ x2n−1x2n. (12)

As in Section 2.4, we can consider the K0-vector space V2n,E(K0) formed by the K0-rational vectors
(with respect to E). The form q induces a quadratic form q0 on V2n,E(K0). Clearly, a K0-rational
subspace X of V2n(K) is totally singular for q if and only if X ∩ V2n,E(K0) is totally singular for q0.
Hence the polar space B+

n (K0) associated to q0 can be identified with the subgeometry B+
n,E(K0) of

B+
n (K) formed by the K0-rational subspaces of V2n(K) which are totally singular for q. Similarly,

Dn(K0) can be identified with the subgeometry Dn,E(K0) of Dn(K) formed by the K0-rational
elements of Dn(K).

A flag of Dn(K) is K0-rational if all of its elements are K0-rational (with respect to E, of course).
Given a nonempty subset J of the type-set {1, 2, . . . , n − 2,+,−} of Dn(K), a point or a line of
GrJ(Dn(K)) are said to be K0-rational if they are K0-rational as flags of Dn(K). The K0-rational
points and lines of GrJ(Dn(K)) form a subgeometry GrJ,E(Dn(K0)) of GrJ(Dn(K)) isomorphic to
GrJ(Dn(K0)). An analogue of Proposition 2.3 also holds:
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Proposition 2.4. A line of GrJ(Dn(K)) is K0-rational if and only if at least two of its points are
K0-rational.

Proof. This statement can be proved in the same way as Proposition 2.3 but for a couple of cases in
the proof of the ‘only if’ part, which we shall now discuss.

1. Suppose that J contains at least one of the types + and −, say + ∈ J . Suppose moreover that
n− 2 6∈ J . Let L be a flag of Dn(K) of type (J \ {+}) ∪ fr(+) = (J \ {+}) ∪ {n− 2} and let P, P ′

be distinct K0-rational flags of type J , both incident with L. Then Q = P ∩P ′ is a K0-rational flag,
P = Q ∪ {M} and P ′ = Q ∪ {M ′} for distinct K0-rational element M,M ′ ∈ S+. Also, L = Q ∪ S
for an (n− 2)-element S incident with Q. We have S ⊆ M ∩M ′ since P and P ′ are incident with L.
However, dim(M ∩M ′) has even codimension in M and M ′, since M and M ′ belong to the same
family of n-elements of B+

n (K), namely S+. Therefore S = M ∩M ′. Hence S is K0-rational by
Lemma 2.1. Thus, L is K0-rational.

2. The set J contains none of the types + or − but it contains n− 2. To fix ideas, suppose that
n > 3. Let L be a flag of Dn(K) of type (J \ {n − 2}) ∪ fr(n − 2) = (J \ {n − 2}) ∪ {n − 3,+,−}
and let P, P ′ be distinct K0-rational flags of type J , both incident with L. Then Q = P ∩ P ′ is a
K0-rational flag, P = Q ∪ {S} and P ′ = Q ∪ {S′} for distinct K0-rational (n− 2)-elements S, S′ of
Dn(K) and L = Q∪ {R,M1,M2} for an (n− 3,+,−)–flag (R,M1,M2) incident with Q. As both P
and P ′ are incident with L, the sum S + S′ is contained in M ∩M ′. However dim(M ∩M) = n− 1
while dim(S + S′) ≥ n − 1 since S 6= S′. Consequently, M ∩ M ′ = S + S′. On the other hand,
S + S′ is a K0-rational subspace of V2n(K), since both S and S′ are K0-rational. Hence M ∩M ′ is
K0-rational. Therefore M ∩M ′ is an (n− 1)-element of B+

n,E(K0) = Gr1(Dn,E(K0)). Accordingly,
M ∩M ′ = M0 ∩M ′

0 for a (+,−)–flag (M0,M
′
0) of Dn,E(K0). On the other hand, all (+,−)–flags

of Dn,E(K0) are (+,−)–flags of Dn(K) too and two (+,−)–flags (M,M ′) and (M0,M
′
0) of Dn(K)

coincide if M ∩M ′ = M0 ∩M ′
0. It follows that M = M0 and M ′ = M0, namely both M and M ′

are K0-rational. It remains to prove that R too is K0-rational. If n− 3 ∈ J then R ∈ Q and there is
nothing to prove. Otherwise R = S ∩ S′. Hence R is K0-rational by Lemma 2.1. Therefore L is
K0-rational.

We have assumed that n > 3. When n = 3 we have J = {n − 2} and L = (M1,M2), of type
(+,−); we get the conclusion as above, but now with no R to take care of.

All we have said for Dn(K0) and GrJ(Dn(K0)) in this section holds for B+
n (K0) and GrJ(B

+
n (K0))

as well.

3. Proof of Theorems 1.1 and 1.3

For Xn equal to An or Dn and a nonempty set of types J , let Γ(K) := GrJ(Xn(K)) and
Γ(K0) := GrJ(Xn(K0)) be its K0-rational subgeometry for a proper sub-division ring K0 of K
(Sections 2.4 and 2.5).

Definition 3.1. We say that a node t of Xn splits J if t 6∈ J and J is not contained in one single
connected component of Xn \ {t}. In other words, t separates at least two of the types of J .

Definition 3.2. We say that a J-flag F (point of Γ(K)) is nearly K0-rational if either at least one
of its elements is K0-rational or there exists a K0-rational element of Xn(K) incident with F and
such that its type splits J . We denote by ΩK0

(Γ(K)) the set of all nearly K0-rational points of Γ(K).
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Obviously, Γ(K0) ⊆ ΩK0(Γ(K)). We shall prove the following:

Theorem 3.3. If Γ(K) is Gr1,n(An(K)), Gr1,−(Dn(K)), Gr1,+,−(Dn(K)) or Gr+,−(Dn(K)) then
ΩK0

(Γ(K)) is a proper subspace of Γ(K).

Theorem 1.1 then immediately follows from Theorem 3.3 and the inclusion Γ(K0) ⊆ ΩK0
(Γ(K)).

3.1. Proof of Theorem 3.3
We need a preliminary result from multi-linear algebra, to be exploited later, when discussing

the case Γ(K) = Gr+,−(Dn(K)).

Lemma 3.4. Suppose that K is a field and let V := V4(K). Given a basis E = (e1, e2, e3, e4) of V ,
let E ∧ E = (ei ∧ ej)i<j be the corresponding basis of the second exterior power V ∧ V of V . Then
all the following hold:

(1) The span 〈v, w〉 of two independent vectors v, w ∈ V is K0-rational with respect to E if and only
if v ∧ w is proportional to a vector of V ∧ V which is K0-rational with respect to E ∧ E.

(2) A non-zero vector v ∈ V is proportional to a K0-rational vector if and only if the subspace
Sv := 〈v ∧ x〉x∈V of V ∧ V is K0-rational with respect to E ∧ E.

(3) The span 〈u, v, w〉 of three independent vectors u, v, w ∈ V is K0-rational (with respect to E) if
and only if 〈u ∧ v, u ∧ w, v ∧ w〉 is K0-rational with respect to E ∧ E.

Proof. (1) Without loss of generality, we can assume v = e1 + e3a3 + e4a4 and w = e2 + e3b3 + e4b4
for a3, a4, b3, b4 ∈ K. Hence v ∧ w = e1,2 + e1,3b3 + e1,4b4 − e2,3a3 − e2,4a4 + e3,4(a3b4 − a4b3),
where we write ei,j for ei ∧ ej . Both parts of (1) are equivalent to the following single claim:
a3, a4, b3, b4 ∈ K0. Hence they are mutually equivalent.

(2) Without loss of generality, we can assume that v = e1 + e2a2 + e3a3 + e4a4. Hence Sv :=
〈v ∧ e2, v ∧ e3, v ∧ e4〉. We have

v ∧ e2 = e1,2 − e2,3a3 − e2,4a4, v ∧ e3 = e1,3 + e2,3a2 − e3,4a4, v ∧ e4 = e1,4 + e2,4a2 + e3,4a3,

with ei,j := ei ∧ ej , as above. Both parts of (2) are thus equivalent to this: a2, a3, a4 ∈ K0. So
Claim (2) is proved.

(3) Without loss of generality, we can assume that u = e1 + e4a, v = e2 + e4b and w = e3 + e4c.
Hence u ∧ v = e1,2 + e1,4b− e2,4a, u ∧ w = e1,3 − e1,4c− e3,4a and v ∧ w = e2,3 + e2,4c− e3,4b.
Both parts of (3) are equivalent to this: a, b, c ∈ K0. Claim (3) follows.

Lemma 3.5. If Γ(K) is as in the hypotheses of Theorem 3.3 then the set ΩK0(Γ(K)) is a subspace
of Γ(K).

Proof. We must show that, for any two nearly K0-rational collinear points F, F ′ of Γ(K), the line
〈F, F ′〉Γ(K) is fully contained in ΩK0(Γ(K)). There are several cases to consider:

1) Γ(K) = Gr1,n(An(K)). Let F = (p,H) and F ′ = (p′,H ′) be two distinct collinear points of
Γ(K), namely two point-hyperplane flags with either p 6= p′ and H = H ′ or p = p′ but H 6= H ′.
Suppose moreover that F and F ′ are nearly K0-rational.
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(a) Let p = p′ and H 6= H ′. Now 〈F, F ′〉Γ(K) = `p,S = {(p,X) : X ⊃ S, dim(X) = n} where
S = H ∩H ′ ⊃ p is a sub-hyperplane containing p. By assumption, there exist K0-rational
subspaces U0, U ′

0 of Vn+1(K) such that p ⊆ U0 ⊆ H and p ⊆ U ′
0 ⊆ H ′. The subspace U0 ∩U ′

0

is K0-rational by Lemma 2.1, it contains p and is contained in S. Hence it is contained in
every hyperplane X ⊃ S. As U0 ∩ U ′

0 is K0-rational, the flag (p,X) is nearly K0-rational for
every hyperplane X ⊂ S, namely `p,S ⊆ ΩK0

(Γ(K)).
(b) Let H = H ′ but p 6= p′. Then 〈F, F ′〉Γ(K) = `L,H = {(x,H) : x ⊂ L,dim(x) = 1} where

L = p+ p′ ⊂ H is the span of p∪ p′ in Vn+1(K). The argument used in case (a) above can be
dualized as follows. By assumption, there exist K0-rational subspaces U0, U

′
0 of Vn+1(K) such

that p ⊆ U0 ⊆ H and p′ ⊆ U ′
0 ⊆ H ′. Clearly, L ⊆ U0 + U ′

0 ⊆ H. Hence x ⊆ U0 + U ′
0 ⊆ H

for every 1-subspace x of L. However U0 + U ′
0 is K0-rational. Therefore (x,H) is nearly

K0-rational. It follows that `L,H ⊆ ΩK0(Γ(K)).

2) Γ(K) = Gr1,−(Dn(K)). Let F = (p,M) and F ′ = (p′,M ′) be two collinear points of Gr1,−(Dn(K)).
Since F and F ′ are collinear, either p = p′ or M = M ′. The line 〈F, F ′〉Γ(K) is as in (7) or (8)
according to whether p = p′ or M = M ′. When p = p′ then the same argument as in (a) of
1) does the job, with the only change that M ∩M ′, which now plays the role of H ∩H ′, has
dimension n− 2 instead of n− 1. If M = M ′ then an argument similar to that used for (b) of 1)
yields the conclusion. We leave the details to the reader.

3) Γ(K) = Gr1,+,−(Dn(K)). Let F = (p,M1,M2) and F ′ = (p′,M ′
1,M

′
2) be two collinear points of

Γ(K) and suppose they both are nearly K0-rational. Two subcases can occur:

(a) Mi = M ′
i for i = 1, 2. If at least one of the n-spaces M1 and M2 is K0-rational, there

is nothing to prove. Suppose that neither of them is K0-rational. Then, since F and F ′

are nearly K0-rational by assumption, there are K0-rational subspaces U0 and U ′
0 with

p ⊆ U0 ⊂ M1 ∩M2 and p′ ⊆ U ′
0 ⊂ M1 ∩M2. We have 〈F, F ′〉Γ(K) = `L,M1,M2

as in (9) with
L = p+ p′. The sum U0 + U ′

0 is a K0-rational subspace of V2n(K) and contains L.
If dim(U0 + U ′

0) < n− 1 then U0 + U ′
0 is a K0-rational element of Dn(K) incident with the

flag (L,M1,M2), which corresponds to the line `L,M1,M2
. As in (b) of 1), it follows that all

points of `L,M1,M2
are nearly K0-rational.

If dim(U0 +U ′
0) > n− 2 then necessarily U0 +U ′

0 = M1 ∩M2. In this case U0 +U ′
0 is not an

element of Dn(K), but it is a K0-rational (n−1)-element of B+
n (K), hence an (n−1)-element

of the subgeometry B+
n (K0) of B+

n (K). As such, U0 +U ′
0 is contained in just two n-elements

N1 and N2 of B+
n (K0). However N1 and N2 also belong to B+

n (K). In fact, they are the
unique two n-elements of B+

n (K) which contain U0 + U ′
0. On the other hand, U0 + U ′

0

is contained in M1 and M2. Therefore {M1,M2} = {N1, N2}. However N1 and N2 are
K0-rational. Hence M1 and M2 are K0-rational, contrary to our assumptions. We have
reached a contradiction. The proof is complete, as far as the present subcase is concerned.

(b) Let p = p′, Mi = M ′
i but Mj 6= M ′

j , for {i, j} = {1, 2}. To fix ideas, assume that M1 = M ′
1

and M2 6= M ′
2. If M1 or p are K0-rational, then there is nothing to prove. Suppose that

neither M1 nor p are K0-rational. Recalling that F and F ′ are nearly K0-rational, one of the
following occurs:
(b1) There are K0-rational subspaces U0, U ′

0 of dimension at most n− 2 such that p ⊆ U0 ⊂
M1 ∩M2 and p ⊆ U ′

0 ⊂ M1 ∩M ′
2.
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(b2) Just one of M2 and M ′
2 is K0-rational. To fix ideas, let M ′

2 be the K0-rational one.
Then there exists a K0-rational subspace U0 of dimension dim(U0) ≤ n− 2 such that
p ⊆ U0 ⊂ M1 ∩M2.

(b3) Both M2 and M ′
2 are K0-rational.

In subcases (b1) and (b2) we can consider the element U0 ∩U ′
0 or U0 ∩M ′

2 respectively. This
element contains p and is K0-rational by Lemma 2.1. So, we get the conclusion as in (a) of
1). In subcase (b3), the intersection U0 = M2 ∩M ′

2 is K0-rational by Lemma 2.1 and has
dimension dim(U0) = n− 2k for a positive integer k < n/2, since M2 and M ′

2 belong to the
same class S−. Hence dim(U0) ≤ n − 2. Moreover, U0 ⊂ M1, since both M2 and M ′

2 are
incident with M1 in Dn(K). Clearly, p ⊆ U0. Again, the conclusion follows as in (a) of 1).

4) Γ(K) = Gr+,−(Dn(K)). Assume firstly that n = 3. We have discussed this case in [6, Theorem
5.10] but we turn back to it here, using an argument different from that of [6].
By the Klein correspondence, V2n(K) = V6(K) can be regarded as the exterior square of V4(K),
with the basis E = (e1, . . . , e6) of V6(K), to be chosen as in Section 2.5, realized as the exterior
square E = E′ ∧ E′ of a suitable basis E′ of V4(K). The elements of D3(K) of type + or −
correspond to 1- and 3-dimensional subspaces of V4(K) and the 1-elements of D3(K) correspond to
2-subspaces of V4(K). By Lemma 3.4, an element of D3(K) is K0-rational with respect to E if and
only if the subspace corresponding to it in V4(K) is K0-rational with respect to E′. Accordingly, a
(+,−)–flag of D3(K) is nearly K0-rational if and only if the corresponding (1, 3)-flag of A3(K) is
nearly K0-rational. Thus, we are driven back to the special case Gr1,3(A3(K)) of Gr1,n(An(K)),
already discussed in 1) of this proof. It follows that ΩK0

(Γ(K)) is a subspace of Γ(K), as claimed.
Consider now n > 3. Let F = (M1,M2) and F ′ = (M ′

1,M
′
2) be two distinct nearly K0-rational

collinear points of Γ(K). As F and F ′ are collinear, either M1 = M ′
1 or M2 = M ′

2. To fix ideas,
let M2 = M ′

2. Hence

`U,M2
= {(M,M2) : M ∈ S+,M ∩M2 ⊃ U}

is the line of Γ(K) through F and F ′, where U = M1 ∩M ′
1 ⊂ M2, dim(U) = n− 2 (see (6)). If

M2 is K0-rational, there is nothing to prove. Assuming that M2 is not K0-rational, there are
still a number of subcases to examine:

(a) Both M1 and M ′
1 are K0-rational. Hence U = M1 ∩M ′

1 is K0-rational. Accordingly, every
(+,−)–flag (M,M2) ∈ `U,M2

is nearly K0-rational.
(b) Neither M1 nor M ′

1 are K0-rational. Hence there exist K0-rational (n− 2)-elements U0 and
U ′
0 such that U0 ⊂ M1 ∩M2 and U ′

0 ⊂ M ′
1 ∩M2.

If U0 = U ′
0 then U0 = M1 ∩M ′

1. However M1 ∩M ′
1 = U . Hence U = U0 is K0-rational. In

this case we are done: all (+,−)–flags incident to U are nearly K0-rational.
On the other hand, suppose U0 6= U ′

0. Then U0 + U ′
0 is a K0-rational (n − 1)-dimensional

subspace of M2. Being K0-rational, U0 + U ′
0 is an (n− 1)-element of B+

n (K0). As such, it
is contained in just two n-elements of B+

n (K0). In other words, both n-elements of B+
n (K)

containing U0 + U ′
0 are K0-rational. However M2 is indeed one of those two elements.

Therefore M2 is K0-rational. This contradicts the assumptions made on M2. Consequently,
this case we have now been considering cannot occur.

(c) Just one of M1 and M ′
1 is K0-rational. To fix ideas, let M1 be the K0-rational one. As

(M ′
1,M2) is nearly K0-rational by assumption, but neither M ′

1 nor M2 are K0-rational, there
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exists a K0-rational (n− 2)-element U ′ ⊂ M ′
1 ∩M2. If U ′ = U then U is K0-rational and we

are done.
Suppose that U ′ 6= U . Therefore U ′ 6⊆ M1, otherwise U ′ = M1∩M ′

1 = U . As both M1 and U ′

are K0-rational, their intersection W := M1 ∩ U ′ is K0-rational. Note that dim(W ) = n− 3,
as one can see by noticing that M1 ∩ U ′ = (M1 ∩ U ′) ∩ U ′ = (M1 ∩M2) ∩ U ′ and recalling
that M1 ∩M2 is a hyperplane of M2.
Consider the orthogonal W⊥ of W with respect to the form q of Section 2.3. Taking
equation (12) into account and recalling that W is K0-rational, we see that W⊥ is a K0-
rational vector subspace of V2n(K). In fact W⊥ is the span in V2n(K) of the orthogonal
W⊥

0 ⊂ V2n,E(K0) of W0 := W ∩ V2n,E(K0) with respect to the form q0 induced by q on
V2n,E(K0). All of the spaces M1,M

′
1, U, U

′ and M2 contain W and are totally singular, hence
they are contained in W⊥. Moreover, M1 and U ′ are K0-rational.
As W⊥ is K0-rational, we can choose a basis B = (w1, . . . , wn+3) of W⊥ formed by K0-
rational vectors. We can also assume that w1, . . . , wn−3 span W . As B consists of K0-rational
vectors, a vector subspace of W⊥ is K0-rational with respect to B if and only if it is K0-
rational with respect to E. Accordingly, M1 and U ′ are K0-rational with respect to B while
M ′

1, U and M2 are not.
We now switch to the quotient W⊥/W , taking the cosets w̄i := wn−3+i + W for i =
1, 2, . . . , 6 to form a basis B of W⊥/W . Since W is totally singular, the form q induces
a quadratic form q̄ on W⊥/W . Let ∆ be the D3-building associated to q̄ and let Γ be
its (+,−)–grassmannian. So, (M1/W,M2/W ) and (M ′

1/W,M2/W ) are points of the line
`U/W,M2/W of Γ, with U/W 6= U ′/W and U ′/W ⊂ M ′

1/W ∩M2/W . By the above, M1/W
and U ′/W are K0-rational while M ′

1/W,M2/W and U/W are not. We now switch from the
D3-building ∆ to the corresponding A3-geometry, with elements of type + and − realized
as points and planes of PG(V4(K)). In this new perspective, the above situation looks as
follows: we have two distinct points p and p′ (corresponding to M1/W and M ′

1/W ), two
distinct lines L and L′ (corresponding to U/W and U ′/W ) and a plane S (corresponding to
M2/W ). Both p and p′ belong to L, p′ ∈ L′ but p 6∈ L′. Moreover, S contains both L and
L′. Hence S is spanned by p and L′. However, M1/W and U ′/W are K0-rational. Therefore,
in view of Lemma 3.4, both p and L′ are K0-rational with respect to a suitable basis B′

of V4(K). Hence S is K0-rational with respect to B′, since it is spanned by p and L′. By
exploiting Lemma 3.4 once again, we obtain that M2/W is K0-rational with respect to B.
We have reached a final contradiction, which shows that the case we have been considering
cannot occur.

The proof is complete.

Lemma 3.6. Let V be a vector space over a division ring K and E = (e1, . . . , en) a basis of V . Let
K0 be a proper sub-division ring of K and take η ∈ K \K0. Suppose S is a subspace of V containing
e1 + e2η. If S is K0-rational (with respect to E) then e1, e2 ∈ S.

Proof. Following our conventions, we assume that V is a right vector space. Let V0 be the K0-vector
space of the K0-rational vectors of V (with respect to E). In order to avoid any confusion, we denote
spans in V by the symbol 〈. . . 〉V and spans in V0 by the symbol 〈. . . 〉V0

.
Assuming that S is K0-rational, let (v1, . . . vk) be a basis of S consisting of K0-rational vectors

and suppose that e1 + e2η ∈ S. Then dim(S ∩ 〈e1, e2〉V ) ≥ 1. Note that the vector space S0 :=
〈v1, . . . , vk〉V0 = S ∩ V0 has the same dimension as S. Thus, since dim(S ∩ 〈e1, e2〉V ) ≥ 1, we also
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have dim(S0 ∩〈e1, e2〉V0) ≥ 1 by the well known Grassmann dimension formula. It follows that there
exists a non-zero vector w ∈ S0 which is a linear combination w = e1c1 + e2c2 with c1, c2 ∈ K0 and
(c1, c2) 6= (0, 0). If either c1 = 0 or c2 = 0, then we are done. So, we can assume that c1 6= 0 6= c2.
Without loss of generality, we can put c1 = 1, so that w1 = e1 + e2c2 with c2 ∈ K0. Now we claim
that there exists j0 ∈ {1, . . . k} such that vj0 = e1a1,j0 + e2a2,j0 + · · ·+ enan,j0 with c2a1,j0 6= a2,j0 .
By way of contradiction, suppose that for all vj ∈ {v1, . . . , vk} we have

vj = e1a1,j + e2a2,j + e3a3,j + · · ·+ enan,j

with c2a1,j = a2,j , i.e. (a1,j , a2,j) = (1, c2)dj for some dj ∈ K. This implies that for all vectors v ∈ S
we have

v = v1λ1 + v2λ2 + · · ·+ vkλk = e1(

k∑
i=1

λi +

k∑
i=1

di) + e1c2(

k∑
i=1

λi +

k∑
i=1

di) + u

with u ∈ 〈e3, . . . , en〉, λi, di ∈ K and c2 ∈ K0. In particular, taking v = e1 + e2η ∈ S we have∑k
i=1 λi+

∑k
i=1 di = 1 and c2(

∑k
i=1 λi+

∑k
i=1 di) = η, forcing η = c2 ∈ K0 which is a contradiction.

The claim is proved.
Consider the ordered pair (w, vj0). As w, vj0 ∈ S0, we can complete this pair to an ordered

basis B of S0 by choosing k − 2 suitable vectors from the k − 1 vectors in {v1, . . . , vk} \ {vj0}.
Without getting out of V0, we can now apply a full Gaussian reduction to the sequence of vectors
of B to obtain another basis (v′1, . . . , v

′
k) of S0 such that the (n× k)-matrix M of the coefficients

of the vectors v′1, . . . , v
′
k with respect to e1, . . . , en is in Column Reduced Echelon Form. (Note

that, according to our convention to deal with right vector spaces, vectors should be represented
as columns.) By construction, the matrix M contains the identity matrix Ik as a minor. Up to a
permutation of the vectors e3, . . . , en we can suppose that this minor encompasses the first k rows
of the matrix M . The remaining n− k rows form an ((n− k)× k)-matrix

N = (bk+i,j)
n−k,k
i,j =1

with entries bk+i,j ∈ K0. However e1 + e2η ∈ S = 〈S0〉V = 〈v′1, v′2, . . . , v′k〉V . Hence there exist
α1, . . . , αk ∈ K such that e1 + e2η = v′1α1 + v′2α2 + · · · + v′kαk. For every i = 1, . . . , k we have
v′i = ei +

∑n
j=k+1 ejbj,i. Therefore

e1 + e2η =

k∑
i=1

eiαi + ek+1(

k∑
j=1

bk+1,jαj) + ek+2(

k∑
j=1

bk+2.jαj) + · · ·+ en(

k∑
j=1

bn,jαj),

which implies α1 = 1, α2 = η, α3 = α4 = · · · = αk = 0 and

k∑
j=1

bk+1,jαj =

k∑
j=1

bk+2,jαj = . . . =

k∑
j=1

bn,jαj = 0.

It follows that e1 + e2η = v′1 + v′2η, whence (e1 − v′1) = (v′2 − e2)η. However,

(e1 − v′1) =

n∑
i=k+1

ei(−bi,1), (v′2 − e2) =

n∑
i=k+1

ei(bi,2η),
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whence −bi,1 = bi,2η for all i ≥ k + 1. Since bi,j ∈ K0 for all i, j and the elements 1, η ∈ K are
linearly independent over K0, it follows that bi,1 = bi,2 = 0 for all i ≥ k+1. So, v′1 = e1 and v′2 = e2.
Since v′1, v

′
2 ∈ S, we obtain e1, e2 ∈ S, which proves the lemma.

Lemma 3.7. If Γ(K) is as in the hypotheses of Theorem 3.3 then not all points of Γ(K) belong to
ΩK0

(Γ(K)).

Proof. We first consider the case Γ(K) = Gr1,n(An(K)). Pick η ∈ K \K0. With E = (e1, . . . , en+1)
as in Section 2.4, put p = 〈e1+e2η〉 and H = 〈e1+e2η, e3, . . . , en, en+1〉. (Needless to say, the symbol
〈. . . 〉 refers to spans in Vn+1(K).) The flag (p,H) is a point of Gr1,n(An(K)). Let S be a subspace
of Vn+1(K) such that p ⊆ S ⊆ H. Any such subspace contains the vector e1 + e2η but neither e1
nor e2. Hence S cannot be K0-rational, by Lemma 3.6. Consequently, (p,H) 6∈ ΩK0

(Γ(K)).
The case Γ(K) = Gr1,+,−(Dn(K)) is entirely analogous. With E = (e1, e2, . . . , e2n) as in

Section 2.5 and η as above, put p = 〈e1 + e3η〉, M1 = 〈e1 + e3η, e2η − e4, e5, e7, . . . , e2n−1〉 and
M2 = 〈e1 + e3η, e2η − e4, e5, e7, . . . , e2n−1〉. Taking equation (12) into account, it is straightforward
to see that p,M1 and M2 belong to Dn(K). It is also easy to see that they form a (1,+,−)–flag
of Dn(K), namely a point of Γ(K). Clearly, none of p, M1 or M2 is K0-rational and Lemma 3.6
implies that none of the subspaces contained in M1∩M2 and containing p can be K0-rational. Hence
(p,M1,M2) 6∈ ΩK0

(Γ(K)).
When Γ(K) = Gr1,−(Dn(K)) we can consider the flag (p,M) where p = 〈e1 + e3η〉 and M =

〈e1 + e3η, e2η − e4, e5, e7, . . . , e2n−1〉. The subspace M is n-dimensional and totally singular for
q. We can also assume to have chosen the signs + and − in such a way that S− is indeed the
class which M belongs to. So, (p,M) is a point of Γ(K). Once again, by Lemma 3.6 we see that
(p,M) 6∈ ΩK0

(Γ(K)).
Finally, let Γ(K) = Gr+,−(Dn(K)). In view of Lemma 3.4, if n = 3 we are back to A3. So,

assume n > 3. With η ∈ K \K0 and E = (e1, . . . , e2n) as in Section 2.5, put

M1 := 〈e1 + e3, e2 − e4, e5 + e7η, e6η − e8, e10, e12, . . . , e2n〉,
M2 := 〈e1 + e4, e2 − e3, e5 + e7η, e6η − e8, e10, e12, . . . , e2n〉.

Then M1 and M2 are n-dimensional totally singular subspaces of Dn(K) but neither of them is
K0-rational. Moreover M1 ∩ M2 = 〈e1 − e2 + e3 + e4, e5 + e7η, e6η − e8, e10, e12, . . . , e2n〉. Hence
{M1,M2} is a {+,−}–flag of Dn(K), necessarily not K0-rational, since neither M1 nor M2 is K0-
rational. Accordingly, M1 ∩M2 is not K0-rational. In fact all K0-rational subspaces of M1 ∩M2 are
contained in 〈e1 − e2 + e3 + e4, e10, e12, . . . , e2n〉, which is (n − 3)-dimensional. Their dimensions
are too small for them to split (+,−). Therefore (M1,M2) 6∈ ΩK0

(Γ(K)).

Lemmas 3.5 and 3.7 yield Theorem 3.3.

3.2. Proof of Corollary 1.2
As already remarked in Section 2.3, the function ι that maps every (n− 1)-element of B+

n (K)
onto the pair of n-elements containing it is an isomorphism from Grn−1(B

+
n (K)) to Gr+,−(Dn(K)).

We know from Theorem 1.1 that if K0 < K then Gr+,−(Dn(K0)) spans a proper subspace of
Gr+,−(Dn(K)). In order to show that the same holds for Grn−1(B

+
n (K0)) and Grn−1(B

+
n (K)), as

claimed in Corollary 1.2, we only need to prove the following:

Proposition 3.8. The isomorphism ι maps the subgeometry Grn−1(B
+
n (K0)) of Grn−1(B

+
n (K))

onto the subgeometry Gr+,−(Dn(K0)) of Gr+,−(Dn(K)).
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Proof. It goes without saying that both Grn−1(B
+
n (K0)) = Grn−1,E(B

+
n (K0)) and Gr+,−(Dn(K0)) =

Gr+,−,E(Dn(K0)) for the same basis E of V2n(K), chosen as in Section 2.5.
Let U = M1 ∩M2 for a (+,−)–flag (M1,M2) of Dn(K). If both M1 and M2 are K0-rational

then U is K0-rational, by Lemma 2.1. Conversely, let U be K0-rational. Let M ′
1 and M ′

2 be the two
n-elements of B+

n,E(K0) containing U . Then M ′
1 and M ′

2 are K0-rational, as they belong to B+
n,E(K0).

However, they are the only two n-elements on U . Hence {M ′
1,M

′
2} = {M1,M2}. Accordingly, M1

and M2 are K0-rational.

3.3. Proof of Theorem 1.3
We are not going to give a detailed proof of this theorem. We will only offer a sketch of it,

leaving the details to reader.
As stated since the beginning of this section, K0 is a proper sub-division ring of K and Γ(K) =

GrJ(Xn(K)), where Xn stands for An or Dn. According to the hypotheses of Theorem 1.3, we
assume that J is not connected.

Suppose firstly that J contains two types j1 and j2, with j1, j2 ≤ n− 2 when Xn = Dn, such
that j1 + 1 < j2 and i 6∈ J for every type i ∈ {j1 + 1, j1 + 2, . . . , j2 − 1}. We say that a J-flag F
of Xn(K) (point of Γ(K)) is nearly K0-rational at (j1, j2) if there exists a K0-rational element X
of Xn(K) incident to F and such that j1 ≤ dim(X) ≤ j2. Let ΩK0,j1,j2(Γ(K)) be the set of J-flags
which are nearly K0-rational at (j1, j2). Using the same argument as in 1) in the proof of Lemma 3.5,
with the roles of 1 and n respectively taken by j1 and j2 we see that ΩK0,j1,j2(Γ(K)) is a subspace of
Γ(K). Next, by an argument similar to that used for Gr1,n(An(K)) in the proof of Lemma 3.7, we
obtain that ΩK0,j1,j2(Γ(K)) 6= Γ(K), namely ΩK0,j1,j2(Γ(K)) is a proper subspace of Γ(K). However
Γ(K0) := GrJ(Xn(K0)) is contained in ΩK0,j1,j2(Γ(K)). Hence Γ(K0) spans a proper subspace of
Γ(K), as stated in Theorem 1.3.

Two more possibilities remain to examine, which are not considered in Theorem 1.1, namely
Xn(K) = Dn(K) and J as follows:

1. J = {j, j + 1, . . . , j + k} ∪ {+,−} for j ≥ 1, j + k < n− 2 and either j > 1 or k > 0. In this
case we can use the same arguments as for J = {1,+,−} in the proof of Theorem 1.1, with
j + k playing the role of 1.

2. J = {j, j +1, . . . , j + k} ∪ {−} or J = {j, j +1, . . . , j + k} ∪ {+}, for j ≥ 1, j + k < n− 2 and
either j > 1 or k > 0. The arguments used for J = {1,−} work for this case as well, with 1
replaced by j + k.

4. Proof of Lemma 1.4 and Theorem 1.5

4.1. Proof of Lemma 1.4
Assume that J is non-connected and K is not finitely generated. Let S be a finite set of

points of Γ(K) = GrJ(Xn(K)), where Xn stands for An or Dn. Each element F of S is a J-flag
F = {U1, U2, . . . , Ut} of vector subspaces Ui of VN (K), where t := |J | and N is n+1 or 2n according
as Xn is An or Dn. Fix a basis Bi,F for each of the vector subspaces Ui ∈ F and each F ∈ S and
let C(S) be the set of all the coordinates of the vectors of ∪F∈S ∪t

i=1 Bi,F with respect to a given
basis of VN (K) (chosen as in Section 2.5 when Xn = Dn).

Since S is finite, C(S) is finite as well; in fact |C(S)| ≤ t ·N · |S|. Therefore, and since K is not
finitely generated, C(S) generates a proper sub-division ring K0 of K. Then Γ(K0) := GrJ(Xn(K0))
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spans a proper subspace of Γ(K), by Theorem 1.3. Obviously, S is contained in Γ(K0). Hence S
spans a proper subspace of Γ(K). Thus we have proved that no finite subset of Γ(K) generates Γ(K),
as claimed in Lemma 1.4.

4.2. Proof of Theorem 1.5
Put Γ := Gr1,n(An(Fp)). We have gr(Γ) = ∞ by Lemma 1.4, since Fp is not finitely generated.

The geometry Γ admits a (full) projective embedding of dimension (n+1)2−1, namely the embedding
eLie mentioned in Remark 1.6. Therefore er(Γ) ≥ (n+ 1)2 − 1.

By way of contradiction, suppose that er(Γ) > (n + 1)2. Then Γ admits a (full) projective
embedding e : Γ → PG(V ) of dimension dim(e) ≥ (n + 1)2 + 1. Consequently, there exists a set
S of (n + 1)2 + 1 points of Γ such that ∪x∈Se(x) ⊂ V spans a subspace VS of V of dimension
dim(VS) = (n+ 1)2 + 1.

Every point x ∈ S is a point-hyperplane flag (px,Hx) of An(Fp). For every x ∈ S we choose a
non-zero vector vx ∈ px and a basis Bx of Hx. Chosen a basis E of Vn+1(Fp), let C(S) be the set of
all elements of Fp which occur as coordinates (with respect to E) of either vx or a vector of Bx, for
x ∈ S. The set C(S) is finite. Hence it generates a finite subfield L of Fp. Every point x ∈ S is
obviously L-rational. Therefore S ⊂ ΓL := Gr1,n(An(L)) ⊂ Γ.

Let VL be the subspace of V corresponding to the span of e(ΓL). Clearly VL ⊇ VS . Hence
dim(VL) ≥ dim(VS) = (n+1)2+1. The restriction eL of e to ΓL is a lax embedding of ΓL in PG(VL).
As noticed in Remark 1.8, inequality (1) holds for lax embeddings too. Therefore ΓL has generating
rank gr(ΓL) ≥ dim(eL) = dim(VL) > (n+ 1)2.

On the other hand, the field L is a simple extension of the prime field Fp and Gr1,n(An(Fp)) has
generating rank equal to (n+ 1)2 − 1, by Cooperstein [7]. Therefore gr(ΓL) ≤ (n+ 1)2 by Blok and
Pasini [2, Corollary 4.8]. We have reached a contradiction. Consequently, er(Γ) ≤ (n + 1)2. The
proof of Theorem 1.5 is complete.
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