34 research outputs found
Metabolic adaptation to a high-fat diet is associated with a change in the gut microbiota
Objective The gut microbiota, which is considered a causal factor in metabolic diseases as shown best in animals, is under the dual influence of the host genome and nutritional environment. This study investigated whether the gut microbiota per se, aside from changes in genetic background and diet, could sign different metabolic phenotypes in mice. Methods The unique animal model of metabolic adaptation was used, whereby C57Bl/6 male mice fed a high-fat carbohydrate-free diet (HFD) became either diabetic (HFD diabetic, HFD-D) or resisted diabetes (HFD diabetes-resistant, HFD-DR). Pyrosequencing of the gut microbiota was carried out to profile the gut microbial community of different metabolic phenotypes. Inflammation, gut permeability, features of white adipose tissue, liver and skeletal muscle were studied. Furthermore, to modify the gut microbiota directly, an additional group of mice was given a glucooligosaccharide (GOS)-supplemented HFD (HFD+GOS). Results Despite the mice having the same genetic background and nutritional status, a gut microbial profile specific to each metabolic phenotype was identified. The HFD-D gut microbial profile was associated with increased gut permeability linked to increased endotoxaemia and to a dramatic increase in cell number in the stroma vascular fraction from visceral white adipose tissue. Most of the physiological characteristics of the HFD-fed mice were modulated when gut microbiota was intentionally modified by GOS dietary fibres. Conclusions The gut microbiota is a signature of the metabolic phenotypes independent of differences in host genetic background and diet
Transcriptome profiling of the feeding-to-fasting transition in chicken liver
<p>Abstract</p> <p>Background</p> <p>Starvation triggers a complex array of adaptative metabolic responses including energy-metabolic responses, a process which must imply tissue specific alterations in gene expression and in which the liver plays a central role. The present study aimed to describe the evolution of global gene expression profiles in liver of 4-week-old male chickens during a 48 h fasting period using a chicken 20 K oligoarray.</p> <p>Results</p> <p>A large number of genes were modulated by fasting (3532 genes with a pvalue corrected by Benjamini-Hochberg < 0.01); 2062 showed an amplitude of variation higher than +/- 40% among those, 1162 presented an human ortholog, allowing to collect functional information. Notably more genes were down-regulated than up-regulated, whatever the duration of fasting (16 h or 48 h). The number of genes differentially expressed after 48 h of fasting was 3.5-fold higher than after 16 h of fasting. Four clusters of co-expressed genes were identified by a hierarchical cluster analysis. Gene Ontology, KEGG and Ingenuity databases were then used to identify the metabolic processes associated to each cluster. After 16 h of fasting, genes involved in ketogenesis, gluconeogenesis and mitochondrial or peroxisomal fatty acid beta-oxidation, were up-regulated (cluster-1) whereas genes involved in fatty acid and cholesterol synthesis were down-regulated (cluster-2). For all genes tested, the microarray data was confirmed by quantitative RT-PCR. Most genes were altered by fasting as already reported in mammals. A notable exception was the <it>HMG-CoA synthase 1 </it>gene, which was up-regulated following 16 and 48 h of fasting while the other genes involved in cholesterol metabolism were down-regulated as reported in mammalian studies. We further focused on genes not represented on the microarray and candidates for the regulation of the target genes belonging to cluster-1 and -2 and involved in lipid metabolism. Data are provided concerning PPARa, SREBP1, SREBP2, NR1H3 transcription factors and two desaturases (FADS1, FADS2).</p> <p>Conclusion</p> <p>This study evidences numerous genes altered by starvation in chickens and suggests a global repression of cellular activity in response to this stressor. The central role of lipid and acetyl-CoA metabolisms and its regulation at transcriptional level are confirmed in chicken liver in response to short-term fasting. Interesting expression modulations were observed for <it>NR1H3, FADS1 </it>and <it>FADS2 </it>genes. Further studies are needed to precise their role in the complex regulatory network controlling lipid metabolism.</p
Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment
A fat-enriched diet modifies intestinal microbiota and initiates a low-grade inflammation, insulin resistance and type-2 diabetes. Here, we demonstrate that before the onset of diabetes, after only one week of a high-fat diet (HFD), live commensal intestinal bacteria are present in large numbers in the adipose tissue and the blood where they can induce inflammation. This translocation is prevented in mice lacking the microbial pattern recognition receptors Nod1 or CD14, but overtly increased in Myd88 knockout and ob/ob mouse. This âmetabolic bacteremiaâ is characterized by an increased co-localization with dendritic cells from the intestinal lamina propria and by an augmented intestinal mucosal adherence of non-pathogenic Escherichia coli. The bacterial translocation process from intestine towards tissue can be reversed by six weeks of treatment with the probiotic strain Bifidobacterium animalis subsp. lactis 420, which improves the animals' overall inflammatory and metabolic status. Altogether, these data demonstrate that the early onset of HFD-induced hyperglycemia is characterized by an increased bacterial translocation from intestine towards tissues, fuelling a continuous metabolic bacteremia, which could represent new therapeutic targets
The Gut Microbiota Regulates Intestinal CD4Â T Cells Expressing RORÎłt and Controls Metabolic Disease
SummaryA high-fat diet (HFD) induces metabolic disease and low-grade metabolic inflammation in response to changes in the intestinal microbiota through as-yet-unknown mechanisms. Here, we show that a HFD-derived ileum microbiota is responsible for a decrease in Th17 cells of the lamina propria in axenic colonized mice. The HFD also changed the expression profiles of intestinal antigen-presenting cells and their ability to generate Th17 cells in vitro. Consistent with these data, the metabolic phenotype was mimicked in RORγt-deficient mice, which lack IL17 and IL22 function, and in the adoptive transfer experiment of T cells from RORγt-deficient mice into Rag1-deficient mice. We conclude that the microbiota of the ileum regulates Th17 cell homeostasis in the small intestine and determines the outcome of metabolic disease
Profiling the landscape of transcription, chromatin accessibility and chromosome conformation of cattle, pig, chicken and goat genomes [FAANG pilot project]
Functional annotation of livestock genomes is a critical and obvious next step to derive maximum benefit for agriculture, animal science, animal welfare and human health. The aim of the Fr-AgENCODE project is to generate multi-species functional genome annotations by applying high-throughput molecular assays on three target tissues/cells relevant to the study of immune and metabolic traits. An extensive collection of stored samples from other tissues is available for further use (FAANG Biosamples âFR-AGENCODEâ). From each of two males and two females per species (pig, cattle, goat, chicken), strand-oriented RNA-seq and chromatin accessibility ATAC-seq assays were performed on liver tissue and on two T-cell types (CD3+CD4+&CD3+CD8+) sorted from blood (mammals) or spleen (chicken). Chromosome Conformation Capture (in situ Hi-C) was also carried out on liver. Sequencing reads from the 3 assays were processed using standard processing pipelines. While most (50â70%) RNA-seq reads mapped to annotated exons, thousands of novel transcripts and genes were found, including extensions of annotated protein-coding genes and new lncRNAs (see abstract #69857). Consistency of ATAC-seq results was confirmed by the significant proportion of called peaks in promoter regions (36â66%) and by the specific accumulation pattern of peaks around gene starts (TSS) v. gene ends (TTS). Principal Component Analyses for RNA-seq (based on quantified gene expression) and ATAC-seq (based on quantified chromatin accessibility) highlighted clusters characterised by cell type and sex in all species. From Hi-C data, we generated 40kb-resolution interaction maps, profiled a genome-wide Directionality Index and identified from 4,100 (chicken) to 12,100 (pig) topologically-associating do- mains (TADs). Correlations were reported between RNA-seq and ATAC-seq results (see abstract #71581). In summary, we present here an overview of the first multi-species and -tissue annotations of chromatin accessibility and genome architecture related to gene expression for farm animals
Resveratrol Increases Glucose Induced GLP-1 Secretion in Mice: A Mechanism which Contributes to the Glycemic Control
Resveratrol (RSV) is a potent anti-diabetic agent when used at high doses. However, the direct targets primarily responsible for the beneficial actions of RSV remain unclear. We used a formulation that increases oral bioavailability to assess the mechanisms involved in the glucoregulatory action of RSV in high-fat diet (HFD)-fed diabetic wild type mice. Administration of RSV for 5 weeks reduced the development of glucose intolerance, and increased portal vein concentrations of both Glucagon-like peptid-1 (GLP-1) and insulin, and intestinal content of active GLP-1. This was associated with increased levels of colonic proglucagon mRNA transcripts. RSV-mediated glucoregulation required a functional GLP-1 receptor (Glp1r) as neither glucose nor insulin levels were modulated in Glp1r-/- mice. Conversely, levels of active GLP-1 and control of glycemia were further improved when the Dipeptidyl peptidase-4 (DPP-4) inhibitor sitagliptin was co-administered with RSV. In addition, RSV treatment modified gut microbiota and decreased the inflammatory status of mice. Our data suggest that RSV exerts its actions in part through modulation of the enteroendocrine axis in vivo
A novel Alzheimer disease locus located near the gene encoding tau protein
This is the author accepted manuscript. The final version is available from the publisher via the DOI in this recordAPOE Δ4, the most significant genetic risk factor for Alzheimer disease (AD), may mask effects of other loci. We re-analyzed genome-wide association study (GWAS) data from the International Genomics of Alzheimer's Project (IGAP) Consortium in APOE Δ4+ (10 352 cases and 9207 controls) and APOE Δ4- (7184 cases and 26 968 controls) subgroups as well as in the total sample testing for interaction between a single-nucleotide polymorphism (SNP) and APOE Δ4 status. Suggestive associations (P<1 Ă 10-4) in stage 1 were evaluated in an independent sample (stage 2) containing 4203 subjects (APOE Δ4+: 1250 cases and 536 controls; APOE Δ4-: 718 cases and 1699 controls). Among APOE Δ4- subjects, novel genome-wide significant (GWS) association was observed with 17 SNPs (all between KANSL1 and LRRC37A on chromosome 17 near MAPT) in a meta-analysis of the stage 1 and stage 2 data sets (best SNP, rs2732703, P=5·8 Ă 10-9). Conditional analysis revealed that rs2732703 accounted for association signals in the entire 100-kilobase region that includes MAPT. Except for previously identified AD loci showing stronger association in APOE Δ4+ subjects (CR1 and CLU) or APOE Δ4- subjects (MS4A6A/MS4A4A/MS4A6E), no other SNPs were significantly associated with AD in a specific APOE genotype subgroup. In addition, the finding in the stage 1 sample that AD risk is significantly influenced by the interaction of APOE with rs1595014 in TMEM106B (P=1·6 Ă 10-7) is noteworthy, because TMEM106B variants have previously been associated with risk of frontotemporal dementia. Expression quantitative trait locus analysis revealed that rs113986870, one of the GWS SNPs near rs2732703, is significantly associated with four KANSL1 probes that target transcription of the first translated exon and an untranslated exon in hippocampus (Pâ€1.3 Ă 10-8), frontal cortex (Pâ€1.3 Ă 10-9) and temporal cortex (Pâ€1.2 Ă 10-11). Rs113986870 is also strongly associated with a MAPT probe that targets transcription of alternatively spliced exon 3 in frontal cortex (P=9.2 Ă 10-6) and temporal cortex (P=2.6 Ă 10-6). Our APOE-stratified GWAS is the first to show GWS association for AD with SNPs in the chromosome 17q21.31 region. Replication of this finding in independent samples is needed to verify that SNPs in this region have significantly stronger effects on AD risk in persons lacking APOE Δ4 compared with persons carrying this allele, and if this is found to hold, further examination of this region and studies aimed at deciphering the mechanism(s) are warranted
Potential probiotic Bifidobacterium animalis ssp. lactis 420 prevents weight gain and glucose intolerance in diet-induced obese mice.
International audienceAlterations of the gut microbiota and mucosal barrier are linked with metabolic diseases. Our aim was to investigate the potential benefit of the potential probiotic Bifidobacterium animalis ssp. lactis 420 in reducing high-fat diet-induced body weight gain and diabetes in mice. In the obesity model, C57Bl/6J mice were fed a high-fat diet (60 energy %) for 12 weeks, and gavaged daily with B. lactis 420 (109 cfu) or vehicle. In the diabetes model, mice were fed a high-fat, ketogenic diet (72 energy % fat) for 4 weeks, with a 6-week subsequent treatment with B. lactis 420 (108-1010 cfu/day) or vehicle, after which they were analysed for body composition. We also analysed glucose tolerance, plasma lipopolysaccharide and target tissue inflammation using only one of the B. lactis 420 groups (109 cfu/day). Intestinal bacterial translocation and adhesion were analysed in a separate experiment using an Escherichia coli gavage. Body fat mass was increased in both obese (10.7±0.8 g (mean ± standard error of mean) vs. 1.86±0.21 g, P<0.001) and diabetic mice (3.01±0.4 g vs. 1.14±0.15 g, P<0.001) compared to healthy controls. Treatment with B. lactis 420 significantly decreased fat mass in obese (7.83 ± 0.67 g, P=0.007 compared to obese with vehicle) and diabetic mice (1.89 ± 0.16 g, P=0.02 for highest dose). This was reflected as reduced weight gain and improved glucose tolerance. Furthermore, B. lactis 420 decreased plasma lipopolysaccharide levels (P<0.001), liver inflammation (P=0.04), and E. coli adhesion in the distal gut (P<0.05). In conclusion, B. lactis 420 reduces fat mass and glucose intolerance in both obese and diabetic mice. Reduced intestinal mucosal adherence and plasma lipopolysaccharide suggest a mechanism related to reduced translocation of gut microbes
Triggering the adaptive immune system with commensal gut bacteria protects against insulin resistance and dysglycemia
Objective: To demonstrate that glycemia and insulin resistance are controlled by a mechanism involving the adaptive immune system and gut microbiota crosstalk. Methods: We triggered the immune system with microbial extracts specifically from the intestinal ileum contents of HFD-diabetic mice by the process of immunization. 35 days later, immunized mice were fed a HFD for up to two months in order to challenge the development of metabolic features. The immune responses were quantified. Eventually, adoptive transfer of immune cells from the microbiota-immunized mice to naĂŻve mice was performed to demonstrate the causality of the microbiota-stimulated adaptive immune system on the development of metabolic disease. The gut microbiota of the immunized HFD-fed mice was characterized in order to demonstrate whether the manipulation of the microbiota to immune system interaction reverses the causal deleterious effect of gut microbiota dysbiosis on metabolic disease. Results: Subcutaneous injection (immunization procedure) of ileum microbial extracts prevented hyperglycemia and insulin resistance in a dose-dependent manner in response to a HFD. The immunization enhanced the proliferation of CD4 and CD8 T cells in lymphoid organs, also increased cytokine production and antibody secretion. As a mechanism explaining the metabolic improvement, the immunization procedure reversed gut microbiota dysbiosis. Finally, adoptive transfer of immune cells from immunized mice improved metabolic features in response to HFD. Conclusions: Glycemia and insulin sensitivity can be regulated by triggering the adaptive immunity to microbiota interaction. This reduces the gut microbiota dysbiosis induced by a fat-enriched diet. Keywords: Gut microbiota and metabolic diseases, Immunity, Insulin resistanc
Periodontitis induced by Porphyromonas gingivalis drives periodontal microbiota dysbiosis and insulin resistance via an impaired adaptive immune response
International audienceOBJECTIVE: To identify a causal mechanism responsible for the enhancement of insulin resistance and hyperglycaemia following periodontitis in mice fed a fat-enriched diet. DESIGN: We set-up a unique animal model of periodontitis in C57Bl/6 female mice by infecting the periodontal tissue with specific and alive pathogens like Porphyromonas gingivalis (Pg), Fusobacterium nucleatum and Prevotella intermedia. The mice were then fed with a diabetogenic/non-obesogenic fat-enriched diet for up to 3â
months. Alveolar bone loss, periodontal microbiota dysbiosis and features of glucose metabolism were quantified. Eventually, adoptive transfer of cervical (regional) and systemic immune cells was performed to demonstrate the causal role of the cervical immune system. RESULTS: Periodontitis induced a periodontal microbiota dysbiosis without mainly affecting gut microbiota. The disease concomitantly impacted on the regional and systemic immune response impairing glucose metabolism. The transfer of cervical lymph-node cells from infected mice to naive recipients guarded against periodontitis-aggravated metabolic disease. A treatment with inactivated Pg prior to the periodontal infection induced specific antibodies against Pg and protected the mouse from periodontitis-induced dysmetabolism. Finally, a 1-month subcutaneous chronic infusion of low rates of lipopolysaccharides from Pg mimicked the impact of periodontitis on immune and metabolic parameters. CONCLUSIONS: We identified that insulin resistance in the high-fat fed mouse is enhanced by pathogen-induced periodontitis. This is caused by an adaptive immune response specifically directed against pathogens and associated with a periodontal dysbiosi