37 research outputs found

    Bmcc1s, a Novel Brain-Isoform of Bmcc1, Affects Cell Morphology by Regulating MAP6/STOP Functions

    Get PDF
    The BCH (BNIP2 and Cdc42GAP Homology) domain-containing protein Bmcc1/Prune2 is highly enriched in the brain and is involved in the regulation of cytoskeleton dynamics and cell survival. However, the molecular mechanisms accounting for these functions are poorly defined. Here, we have identified Bmcc1s, a novel isoform of Bmcc1 predominantly expressed in the mouse brain. In primary cultures of astrocytes and neurons, Bmcc1s localized on intermediate filaments and microtubules and interacted directly with MAP6/STOP, a microtubule-binding protein responsible for microtubule cold stability. Bmcc1s overexpression inhibited MAP6-induced microtubule cold stability by displacing MAP6 away from microtubules. It also resulted in the formation of membrane protrusions for which MAP6 was a necessary cofactor of Bmcc1s. This study identifies Bmcc1s as a new MAP6 interacting protein able to modulate MAP6-induced microtubule cold stability. Moreover, it illustrates a novel mechanism by which Bmcc1 regulates cell morphology

    Glucocorticoid receptor in astrocytes regulates midbrain dopamine neurodegeneration through connexin hemichannel activity

    Get PDF
    The precise contribution of astrocytes in neuroinflammatory process occurring in Parkinson's disease (PD) is not well characterized. In this study, using GR(Cx30CreERT2) mice that are conditionally inactivated for glucocorticoid receptor (GR) in astrocytes, we have examined the actions of astrocytic GR during dopamine neuron (DN) degeneration triggered by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). The results show significantly augmented DN loss in GR(Cx30CreERT2) mutant mice in substantia nigra (SN) compared to controls. Hypertrophy of microglia but not of astrocytes was greatly enhanced in SN of these astrocytic GR mutants intoxicated with MPTP, indicating heightened microglial reactivity compared to similarly-treated control mice. In the SN of GR astrocyte mutants, specific inflammation-associated transcripts ICAM-1, TNF-alpha and Il-1 beta as well as TNF-alpha protein levels were significantly elevated after MPTP neurotoxicity compared to controls. Interestingly, this paralleled increased connexin hemichannel activity and elevated intracellular calcium levels in astrocytes examined in acute midbrain slices from control and mutant mice treated with MPP+. The increased connexin-43 hemichannel activity was found in vivo in MPTP-intoxicated mice. Importantly, treatment of MPTP-injected GR(Cx30CreERT2) mutant mice with TAT-Gap19 peptide, a specific connexin-43 hemichannel blocker, reverted both DN loss and microglial activation; in wild-type mice there was partial but significant survival effect. In the SN of postmortem PD patients, a significant decrease in the number of astrocytes expressing nuclear GR was observed, suggesting the participation of astrocytic GR deregulation of inflammatory process in PD. Overall, these data provide mechanistic insights into GR-modulated processes in vivo, specifically in astrocytes, that contribute to a pro-inflammatory state and dopamine neurodegeneration in PD pathology

    Inhibiting astrocyte connexin-43 hemichannels blocks radiation-induced vesicular VEGF-A release and blood-brain barrier dysfunction

    No full text
    Therapeutic brain irradiation with ionizing radiation exerts multiple side effects including barrier leakage that disturbs glial-neuronal functioning and may affect cognition. Astrocytes contribute to barrier leakage by endfeet release of various vasoactive substances acting on capillary endothelial cells forming the barrier. Here, we investigated X-ray effects on astrocytic vesicular transport in mice and determined whether interfering with astrocyte connexins affects radiation-induced barrier leakage. We found that astrocytic VEGF-A-loaded VAMP3 vesicles drastically reorganize starting from 6 h post-irradiation and move in a calcium- and Cx43-dependent manner towards endfeet where VEGF-A is released, provoking barrier leakage. Vesicular transport activation, VEGF-A release and leakage 24 h post-irradiation were all potently inhibited by astrocytic Cx43 KO, Cx43S255/262/279/282A (MK4) mutant mice and TATGap19 inhibition of Cx43 hemichannel opening. Astrocyte VEGF release is a major player in complications of brain irradiation, which can be mitigated by anti-VEGF treatments. Targeting Cx43 hemichannels allows to prevent astrocyte VEGF release at an early stage after brain irradiation

    Neurons and brain macrophages regulate connexin expression in cultured astrocytes.

    No full text
    International audienceNeurons and brain macrophages (BM), respectively, increase and inhibit gap junctional communication (GJC) and connexin expression in cultured astrocytes. Thus, in brain diseases and injuries, neuronal death associated with the BM activation may decrease GJC in astrocytes and therefore have a physiopathological relevance

    Proinflammatory cytokines released from microglia inhibit gap junctions in astrocytes: potentiation by β-amyloid

    No full text
    International audienceBrain inflammation is characterized by a reactive gliosis involving the activation of astrocytes and microglia. This process, common to many brain injuries and diseases, underlies important phenotypic changes in these two glial cell types. One characteristic feature of astrocytes is their high level of intercellular communication mediated by gap junctions. Previously, we have reported that astrocyte gap junctional communication (AGJC) and the expression of connexin 43 (Cx43), the main constitutive protein of gap junctions, are inhibited in microglia (MG)-astrocyte cocultures. Here, we report that bacterial lipopolysaccharide activation of microglia increases their inhibitory effect on Cx43 expression and AGJC. This inhibition is mimicked by treating astrocyte cultures with conditioned medium harvested from activated microglia. Interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha) were identified as being the main factors responsible for this conditioned medium-mediated activity. Interestingly, an inflammatory response characterized by MG activation and reactive astrocytes occurs in Alzheimer's disease, at sites of beta-amyloid (Abeta) deposits. We found that this peptide potentiates the inhibitory effect of a conditioned medium diluted at a concentration that is not effective per se. This potentiation is prevented by treating astrocytes with specific blockers of IL-1beta and TNF-alpha activities. Thus, the suppression of communication between astrocytes, induced by activated MG could contribute to the proposed role of reactive gliosis in this neurodegenerative disease

    Contribution of Astroglial Cx43 Hemichannels to the Modulation of Glutamatergic Currents by D-Serine in the Mouse Prefrontal Cortex

    Get PDF
    International audienceAstrocytes interact dynamically with neurons by modifying synaptic activity and plasticity. This interplay occurs through a process named gliotransmission, meaning that neuroactive molecules are released by astrocytes. Acting as a gliotransmitter, D-serine, a co-agonist of the NMDA receptor at the glycine-binding site, can be released by astrocytes in a calcium [Ca2+]i-dependent manner. A typical feature of astrocytes is their high expression level of connexin43 (Cx43), a protein forming gap junction channels and hemichannels associated with dynamic neuroglial interactions. Pharmacological and genetic inhibition of Cx43 hemichannel activity reduced the amplitude of NMDA EPSCs in mouse layer 5 prefrontal cortex pyramidal neurons without affecting AMPA EPSC currents. This reduction of NMDA EPSCs was rescued by addition of D-serine in the extracellular medium. LTP of NMDA and AMPA EPSCs after high-frequency stimulation was reduced by prior inhibition of Cx43 hemichannel activity. Inactivation of D-serine synthesis within the astroglial network resulted in the reduction of NMDA EPSCs, which was rescued by adding extracellular D-serine. We showed that the activity of Cx43 hemichannels recorded in cultured astrocytes was [Ca2+]I dependent. Accordingly, in acute cortical slices, clamping [Ca2+]i at a low level in astroglial network resulted in an inhibition of NMDA EPSC potentiation that was rescued by adding extracellular D-serine. This work demonstrates that astroglial Cx43 hemichannel activity is associated with D-serine release. This process, occurring by direct permeation of D-serine through hemichannels or indirectly by Ca2+ entry and activation of other [Ca2+]i-dependent mechanisms results in the modulation of synaptic activity and plasticity.SIGNIFICANCE STATEMENT We recorded neuronal glutamatergic (NMDA and AMPA) responses in prefrontal cortex (PFC) neurons and used pharmacological and genetic interventions to block connexin-mediated hemichannel activity specifically in a glial cell population. For the first time in astrocytes, we demonstrated that hemichannel activity depends on the intracellular calcium concentration and is associated with D-serine release. Blocking hemichannel activity reduced the LTP of these excitatory synaptic currents triggered by high-frequency stimulation. These observations may be particularly relevant in the PFC, where D-serine and its converting enzyme are highly expressed
    corecore