17 research outputs found

    Barriers to and enablers of diabetic retinopathy screening attendance: a systematic review of published and grey literature

    Get PDF
    AIMS: To identify and synthesize studies reporting modifiable barriers/enablers associated with retinopathy screening attendance in people with Type 1 or Type 2 diabetes, and to identify those most likely to influence attendance. METHODS: We searched MEDLINE, EMBASE, PsycINFO, Cochrane Library and the 'grey literature' for quantitative and qualitative studies to February 2017. Data (i.e. participant quotations, interpretive summaries, survey results) reporting barriers/enablers were extracted and deductively coded into domains from the Theoretical Domains Framework; with domains representing categories of theoretical barriers/enablers proposed to mediate behaviour change. Inductive thematic analysis was conducted within domains to describe the role each domain plays in facilitating or hindering screening attendance. Domains that were more frequently coded and for which more themes were generated were judged more likely to influence attendance. RESULTS: Sixty-nine primary studies were included. We identified six theoretical domains ['environmental context and resources' (75% of included studies), 'social influences' (51%), 'knowledge' (51%), 'memory, attention, decision processes' (50%), 'beliefs about consequences' (38%) and 'emotions' (33%)] as the key mediators of diabetic retinopathy screening attendance. Examples of barriers populating these domains included inaccurate diabetic registers and confusion between routine eye care and retinopathy screening. Recommendations by healthcare professionals and community-level media coverage acted as enablers. CONCLUSIONS: Across a variety of contexts, we found common barriers to and enablers of retinopathy screening that could be targeted in interventions aiming to increase screening attendance

    Hypoxia modulates the barrier and coagulant function of cultured bovine endothelium.

    No full text
    Exposure of cultured endothelium to environments with low concentrations of oxygen, in the range of those observed in pathophysiologic hypoxemic states in vivo, compromises cellular barrier and coagulant function. An atmosphere with PO2 approximately 14 mm Hg was not lethally toxic to endothelial cultures, but cells became larger and exhibited small intercellular gaps. At low oxygen concentrations, passage of macromolecular tracers through hypoxic endothelial monolayers was accelerated in a time- and dose-dependent manner, presumably by a paracellular pathway via the gaps. Cell surface coagulant properties of the endothelium were also perturbed. At PO2 approximately 14 mm Hg thrombomodulin antigen and functional activity on the cell surface were diminished by 80-90%, and Northern blots demonstrated suppression of thrombomodulin mRNA. The decrease in thrombomodulin was twice as great compared with the general decline in total protein synthesis in hypoxia. In addition, expression of a direct Factor X activator developed under hypoxic conditions; the activator was membrane-associated and expressed on the surface of intact cultures, Ca-dependent, inhibited by HgCl2 but not PMSF, and had Km approximately 25 micrograms/ml for the substrate at pH 7.4. Synthesis of the activator was blocked by inclusion of cycloheximide, but not warfarin, in the culture medium. These results demonstrate that endothelial function is perturbed in a selective manner in the presence of low concentrations of oxygen, providing insights into mechanisms which may contribute to vascular dysfunction in hypoxemic states
    corecore