124 research outputs found

    Examining the Impact of Provenance-Enabled Media on Trust and Accuracy Perceptions

    Full text link
    In recent years, industry leaders and researchers have proposed to use technical provenance standards to address visual misinformation spread through digitally altered media. By adding immutable and secure provenance information such as authorship and edit date to media metadata, social media users could potentially better assess the validity of the media they encounter. However, it is unclear how end users would respond to provenance information, or how to best design provenance indicators to be understandable to laypeople. We conducted an online experiment with 595 participants from the US and UK to investigate how provenance information altered users' accuracy perceptions and trust in visual content shared on social media. We found that provenance information often lowered trust and caused users to doubt deceptive media, particularly when it revealed that the media was composited. We additionally tested conditions where the provenance information itself was shown to be incomplete or invalid, and found that these states have a significant impact on participants' accuracy perceptions and trust in media, leading them, in some cases, to disbelieve honest media. Our findings show that provenance, although enlightening, is still not a concept well-understood by users, who confuse media credibility with the orthogonal (albeit related) concept of provenance credibility. We discuss how design choices may contribute to provenance (mis)understanding, and conclude with implications for usable provenance systems, including clearer interfaces and user education.Comment: Accepted to CSCW 202

    A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2

    Full text link
    SCUBA-2 is the largest submillimetre wide-field bolometric camera ever built. This 43 square arc-minute field-of-view instrument operates at two wavelengths (850 and 450 microns) and has been installed on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. SCUBA-2 has been successfully commissioned and operational for general science since October 2011. This paper presents an overview of the on-sky performance of the instrument during and since commissioning in mid-2011. The on-sky noise characteristics and NEPs of the 450 and 850 micron arrays, with average yields of approximately 3400 bolometers at each wavelength, will be shown. The observing modes of the instrument and the on-sky calibration techniques are described. The culmination of these efforts has resulted in a scientifically powerful mapping camera with sensitivities that allow a square degree of sky to be mapped to 10 mJy/beam rms at 850 micron in 2 hours and 60 mJy/beam rms at 450 micron in 5 hours in the best weather.Comment: 18 pages, 15 figures.SPIE Conference series 8452, Millimetre, Submillimetre and Far-infrared Detectors and Instrumentation for Astronomy VI 201

    Novel bioresorbable textile composites for medical applications

    Get PDF
    Currently, phosphate glass fibre (PGF) reinforced composites are a potential solution for bone repairing due to sufficient mechanical properties and full bioresorbability. In this study, a small inkle-type loom for hand weaving facilitated the production of PGF in textile form. These PGF textiles, along with unidirectional (UD) fibre mats made from the same batch of yarns, were utilised to manufacture fully resorbable textile composites (T-C) and 0°/90° lay-up UD fibre reinforced composites (0/90-C). Retention of flexural properties and weight loss of the composites were evaluated during degradation in phosphate buffered saline (PBS) at 37°C for 28 days. The initial flexural strength values that were observed for the T-C and 0/90-C composites were ∼;176 MPa and ∼;137 MPa, whilst the modulus values were 8.6 GPa and 6.9 GPa, respectively. The higher flexural strength and modulus values for the T-C when compared to those of 0/90-C were attributed to the textile weaving manually, resulting in a biased fabric with a higher density of fibres in the warp direction. ∼;20% flexural strength and ∼;25% flexural modulus were maintained for all composites at the 28 day interval. For this study, the textile achievement will be the significant milestone on the research of bioresorbable PGFs reinforced composite in medical application, and important step on the industrial direction of bioresorbable medical device. © 2017 International Committee on Composite Materials. All rights reserved

    Cross-National Differences in Victimization : Disentangling the Impact of Composition and Context

    Get PDF
    Varying rates of criminal victimization across countries are assumed to be the outcome of countrylevel structural constraints that determine the supply ofmotivated o¡enders, as well as the differential composition within countries of suitable targets and capable guardianship. However, previous empirical tests of these ‘compositional’ and ‘contextual’ explanations of cross-national di¡erences have been performed upon macro-level crime data due to the unavailability of comparable individual-level data across countries. This limitation has had two important consequences for cross-national crime research. First, micro-/meso-level mechanisms underlying cross-national differences cannot be truly inferred from macro-level data. Secondly, the e¡ects of contextual measures (e.g. income inequality) on crime are uncontrolled for compositional heterogeneity. In this paper, these limitations are overcome by analysing individual-level victimization data across 18 countries from the International CrimeVictims Survey. Results from multi-level analyses on theft and violent victimization indicate that the national level of income inequality is positively related to risk, independent of compositional (i.e. micro- and meso-level) di¡erences. Furthermore, crossnational variation in victimization rates is not only shaped by di¡erences in national context, but also by varying composition. More speci¢cally, countries had higher crime rates the more they consisted of urban residents and regions with lowaverage social cohesion.

    GPR54 (KISS1R) Transactivates EGFR to Promote Breast Cancer Cell Invasiveness

    Get PDF
    Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness

    The JCMT BISTRO Survey: The Magnetic Field Strength in the Orion A Filament

    Get PDF
    We determine the magnetic field strength in the OMC 1 region of the Orion A filament via a new implementation of the Chandrasekhar-Fermi method using observations performed as part of the James Clerk Maxwell Telescope (JCMT) B-Fields In Star-Forming Region Observations (BISTRO) survey with the POL-2 instrument. We combine BISTRO data with archival SCUBA-2 and HARP observations to find a plane-of-sky magnetic field strength in OMC 1 of B_pos=6.6±4.7 mG, where δB_pos=4.7 mG represents a predominantly systematic uncertainty. We develop a new method for measuring angular dispersion, analogous to unsharp masking. We find a magnetic energy density of ~1.7×10^-7 Jm^-3 in OMC 1, comparable both to the gravitational potential energy density of OMC 1 (~10^-7 Jm^-3), and to the energy density in the Orion BN/KL outflow (~10^-7 Jm^-3). We find that neither the Alfvén velocity in OMC 1 nor the velocity of the super-Alfvénic outflow ejecta is sufficiently large for the BN/KL outflow to have caused large-scale distortion of the local magnetic field in the ~500-year lifetime of the outflow. Hence, we propose that the hour-glass field morphology in OMC 1 is caused by the distortion of a primordial cylindrically-symmetric magnetic field by the gravitational fragmentation of the filament and/or the gravitational interaction of the BN/KL and S clumps. We find that OMC 1 is currently in or near magnetically-supported equilibrium, and that the current large-scale morphology of the BN/KL outflow is regulated by the geometry of the magnetic field in OMC 1, and not vice versa

    Physical activity and nutrition behaviour outcomes of a cluster-randomized controlled trial for adults with metabolic syndrome in Vietnam

    Get PDF
    Background: Metabolic syndrome is prevalent among Vietnamese adults, especially those aged 50-65 years. This study evaluated the effectiveness of a 6 month community-based lifestyle intervention to increase physical activity levels and improve dietary behaviours for adults with metabolic syndrome in Vietnam. Methods: Ten communes, involving participants aged 50-65 years with metabolic syndrome, were recruited from Hanam province in northern Vietnam. The communes were randomly allocated to either the intervention (five communes, n = 214) or the control group (five communes, n = 203). Intervention group participants received a health promotion package, consisting of an information booklet, education sessions, a walking group, and a resistance band. Control group participants received one session of standard advice during the 6 month period. Data were collected at baseline and after the intervention to evaluate programme effectiveness. The International Physical Activity Questionnaire - Short Form and a modified STEPS questionnaire were used to assess physical activity and dietary behaviours, respectively, in both groups. Pedometers were worn by the intervention participants only for 7 consecutive days at baseline and post-intervention testing. To accommodate the repeated measures and the clustering of individuals within communes, multilevel mixed regression models with random effects were fitted to determine the impacts of intervention on changes in outcome variables over time and between groups. Results: With a retention rate of 80.8%, the final sample comprised 175 intervention and 162 control participants. After controlling for demographic and other confounding factors, the intervention participants showed significant increases in moderate intensity activity (P = 0.018), walking (P < 0.001) and total physical activity (P = 0.001), as well as a decrease in mean sitting time (P < 0.001), relative to their control counterparts. Significant improvements in dietary behaviours were also observed, particularly reductions in intake of animal internal organs (P = 0.001) and in using cooking oil for daily meal preparation (P = 0.001). Conclusions: The prescribed community-based physical activity and nutrition intervention programme successfully improved physical activity and dietary behaviours for adults with metabolic syndrome in Vietnam. Trial registration: Australian New Zealand Clinical Trials Registry, ACTRN12614000811606. Registered on 31 July 201

    SNAPSHOT USA 2020: A second coordinated national camera trap survey of the United States during the COVID-19 pandemic

    Get PDF
    Managing wildlife populations in the face of global change requires regular data on the abundance and distribution of wild animals, but acquiring these over appropriate spatial scales in a sustainable way has proven challenging. Here we present the data from Snapshot USA 2020, a second annual national mammal survey of the USA. This project involved 152 scientists setting camera traps in a standardized protocol at 1485 locations across 103 arrays in 43 states for a total of 52,710 trap-nights of survey effort. Most (58) of these arrays were also sampled during the same months (September and October) in 2019, providing a direct comparison of animal populations in 2 years that includes data from both during and before the COVID-19 pandemic. All data were managed by the eMammal system, with all species identifications checked by at least two reviewers. In total, we recorded 117,415 detections of 78 species of wild mammals, 9236 detections of at least 43 species of birds, 15,851 detections of six domestic animals and 23,825 detections of humans or their vehicles. Spatial differences across arrays explained more variation in the relative abundance than temporal variation across years for all 38 species modeled, although there are examples of significant site-level differences among years for many species. Temporal results show how species allocate their time and can be used to study species interactions, including between humans and wildlife. These data provide a snapshot of the mammal community of the USA for 2020 and will be useful for exploring the drivers of spatial and temporal changes in relative abundance and distribution, and the impacts of species interactions on daily activity patterns. There are no copyright restrictions, and please cite this paper when using these data, or a subset of these data, for publication

    SNAPSHOT USA 2019: a coordinated national camera trap survey of the United States

    Get PDF
    With the accelerating pace of global change, it is imperative that we obtain rapid inventories of the status and distribution of wildlife for ecological inferences and conservation planning. To address this challenge, we launched the SNAPSHOT USA project, a collaborative survey of terrestrial wildlife populations using camera traps across the United States. For our first annual survey, we compiled data across all 50 states during a 14-week period (17 August-24 November of 2019). We sampled wildlife at 1,509 camera trap sites from 110 camera trap arrays covering 12 different ecoregions across four development zones. This effort resulted in 166,036 unique detections of 83 species of mammals and 17 species of birds. All images were processed through the Smithsonian's eMammal camera trap data repository and included an expert review phase to ensure taxonomic accuracy of data, resulting in each picture being reviewed at least twice. The results represent a timely and standardized camera trap survey of the United States. All of the 2019 survey data are made available herein. We are currently repeating surveys in fall 2020, opening up the opportunity to other institutions and cooperators to expand coverage of all the urban-wild gradients and ecophysiographic regions of the country. Future data will be available as the database is updated at eMammal.si.edu/snapshot-usa, as will future data paper submissions. These data will be useful for local and macroecological research including the examination of community assembly, effects of environmental and anthropogenic landscape variables, effects of fragmentation and extinction debt dynamics, as well as species-specific population dynamics and conservation action plans. There are no copyright restrictions; please cite this paper when using the data for publication
    corecore