607 research outputs found
Volunteers, Families and Children in Need: An Evaluation of Family Friends
This paper explores the findings from a small-scale research project that analysed the impact of Family Friends – a voluntary agency that provides support to families under stress who have children aged between 5 and 11 years. The study, funded by Family Friends, evaluated service users' perceptions of the support they received, specifically in relation to the significance and impact of the volunteer befrienders. The research identified that there are a proportion of families in need who fail to attract services from mainstream statutory agencies. It also identified that the Family Friends voluntary agency makes a particular contribution to service provision by offering a friendly, non-stigmatizing, caring and responsive service
Response of the ionospheric electron density to different types of seismic events
International audienceThe electron density data recorded by the Lang-muir Probe Instrument (ISL, Instrument Sonde de Lang-muir) onboard the DEMETER satellite have been collected for nearly 4 yr (during 2006–2009) to perform a statistical analysis. During this time, more than 7000 earthquakes with a magnitude larger than or equal to 5.0 occurred all over the world. For the statistical studies, all these events have been divided into various categories on the basis of the seismic information, including Southern or Northern Hemisphere earthquakes, inland or sea earthquakes, earthquakes at different magnitude levels, earthquakes at different depth levels, isolated events and all events. To distinguish the pre-earthquake anomalies from the possible ionospheric anomalies related to the geomagnetic activity, the data were filtered with the K p index. The statistical results obviously show that the electron density increases close to the epicen-tres both in the Northern and the Southern Hemisphere, but the position of the anomaly is slightly shifted to the north in the Northern Hemisphere and to the south in the Southern Hemisphere. The electron density related to both inland and sea earthquakes presents an anomaly approximately close to the epicentres, but the anomaly for sea earthquakes is more significant than for inland earthquakes. The intensity of the anomalies is enhanced when the magnitude increases and is reduced when the depth increases. A similar anomaly can also be seen in the statistical results concerning the isolated earthquakes. All these statistical results can help to better understand the preparation process of the earthquakes and their influence up to the ionospheric levels
Inter-Disciplinary Validation of Pre Earthquake Signals. Case Study for Major Earthquakes in Asia (2004-2010) and for 2011 Tohoku Earthquake
We carried out multi-sensors observations in our investigation of phenomena preceding major earthquakes. Our approach is based on a systematic analysis of several physical and environmental parameters, which we found, associated with the earthquake processes: thermal infrared radiation, temperature and concentration of electrons in the ionosphere, radon/ion activities, and air temperature/humidity in the atmosphere. We used satellite and ground observations and interpreted them with the Lithosphere-Atmosphere- Ionosphere Coupling (LAIC) model, one of possible paradigms we study and support. We made two independent continues hind-cast investigations in Taiwan and Japan for total of 102 earthquakes (M>6) occurring from 2004-2011. We analyzed: (1) ionospheric electromagnetic radiation, plasma and energetic electron measurements from DEMETER (2) emitted long-wavelength radiation (OLR) from NOAA/AVHRR and NASA/EOS; (3) radon/ion variations (in situ data); and 4) GPS Total Electron Content (TEC) measurements collected from space and ground based observations. This joint analysis of ground and satellite data has shown that one to six (or more) days prior to the largest earthquakes there were anomalies in all of the analyzed physical observations. For the latest March 11 , 2011 Tohoku earthquake, our analysis shows again the same relationship between several independent observations characterizing the lithosphere /atmosphere coupling. On March 7th we found a rapid increase of emitted infrared radiation observed from satellite data and subsequently an anomaly developed near the epicenter. The GPS/TEC data indicated an increase and variation in electron density reaching a maximum value on March 8. Beginning from this day we confirmed an abnormal TEC variation over the epicenter in the lower ionosphere. These findings revealed the existence of atmospheric and ionospheric phenomena occurring prior to the 2011 Tohoku earthquake, which indicated new evidence of a distinct coupling between the lithosphere and atmosphere/ionosphere
Thermal properties of vesicular rhyolite
Thermal diffusivity of rhyolite melt and rhyolite foam (70–80% porosity) has been measured using the radial heat transfer method. Cylindrical samples (length 50–55 mm, diameter 22 mm) of rhyolite melt and foam have been derived by heating samples of Little Glass Mountain obsidian. Using available data on heat capacity and density of rhyolite melt, the thermal conductivity of samples has been determined. The difference in thermal conductivity between rhyolite melt and foam at igneous temperatures ( 1000°C) is about one order of magnitude. The effect of thermal insulation of magmas due to vesiculation and foaming of the top layer is discussed in terms of the data obtained using a simple illustrative model of magma chamber convection
Spectral features of lightning-induced ion cyclotron waves at low latitudes: DEMETER observations and simulation
International audience[1] We use a comprehensive analysis of 6-component ELF wave data from the DEMETER satellite to study proton whistlers, placing emphasis on low-latitude events originating from lightning strokes in the hemisphere opposite to the hemisphere of observation. In this case, the formation of proton whistlers does not involve mode conversion caused by a strong mode coupling at a crossover frequency, although a polarization reversal remains an important element in formation of the phenomenon. DEMETER measurements of the six electromagnetic field components in the frequency band below 1000 Hz make it possible to determine not only the dynamic spectrum, but also the wave polarization, the wave normal angle, and the normalized parallel component of the Poynting vector. This permits us to address fine features of proton whistlers, in particular, we show that the deviation of the upper cutoff frequency from the equatorial cyclotron frequency is related to the Doppler shift. Experimental study of proton whistlers is supplemented by an investigation of ion cyclotron wave propagation in a multicomponent magnetoplasma and by numerical modeling of spectrograms, both in the frame of geometrical optics
Theory of Luminescent Emission in Nanocrystal ZnS:Mn with an Extra Electron
We consider the effect of an extra electron injected into a doped quantum dot
. The Coulomb interaction and the exchange interaction between the
extra electron and the states of the Mn ion will mix the wavefunctions, split
the impurity energy levels, break the previous selection rules and change the
transition probabilities. Using this model of an extra electron in the doped
quantum dot, we calculated the energy and the wavefunctions, the luminescence
probability and the transition lifetime and compare with the experiments. Our
calculation shows that two orders of magnitudes of lifetime shortening can
occur in the transition when an extra electron is present.Comment: 15 pages, 2 Figs No change in Fig
Cylindrical Langmuir probes beyond the orbital-motion-limited regime
The current I to a cylindrical probe at rest in an unmagnetized plasma, with probe bias highly positive, is determined. The way I lags behind the orbital-motion-limited OMLcurrent, 1 OML R, as the radius R exceeds the maximum radius for the OML regime to hold, is of interest for space-tether applications. The ratio I/I OML is roughly a decreasing function of R/lD R max /lDe , which is independent of bias, with lDe the electron Debye length and Rmax /l De roughly an increasing function of the temperature ratio, Ti /Te. The dependence of current on ion energy is used to discuss the effect of probe motion through the plasma, a case applying to tethers in low orbit
Atmospheric and ionospheric coupling phenomena related to large earthquakes
This paper explores multi-instrument space-borne observations in order to validate physical concepts of Lithosphere-Atmosphere-Ionosphere Coupling (LAIC) in relation to major seismic events. In this study we apply already validated observation to identify atmospheric and ionospheric precursors associated with some of recent most destructive earthquakes: M8.6 of March 25, 2005 and M8.5 September 15, 2007 in Sumatra, and M7.9 May 12, 2008 in Wenchuan, China. New investigations are also presented concerning these three earthquakes and for the M7.3 March 2008 in the Xinjiang-Xizang border region, China (the Yutian earthquake). It concerns the ionospheric density, the Global Ionospheric Maps (GIM) of the Total Electron Content (TEC), the Thermal Infra-Red (TIR) anomalies, and the Outgoing Longwave Radiation (OLR) data. It is shown that all these anomalies are identified as short-term precursors, which can be explained by the LAIC concept proposed by Pulinets and Ouzounov (2011)
- …