1,166 research outputs found
Host following of an ant associate during nest relocation
Ant nests are relatively stable and long-lasting microhabitats that attract a diverse group of arthropods. Particular stressors, however, can trigger ants to relocate their nest to a new site. It is unclear how associated arthropods respond to occasional nest moving of their host. Here, I report field observations which showed that the potentially parasitic larvae of the beetle Clytra quadripunctata follow their red wood ant host during nest relocation, either by crawling on their own or by being carried by the host workers. These observations shed new light on the spatial dynamics between ants and their associates
Contrasting indirect effects of an ant host on prey–predator interactions of symbiotic arthropods
Indirect interactions occur when a species affects another species by altering the density (density-mediated interactions) or influencing traits (trait-mediated interactions) of a third species. We studied variation in these two types of indirect interactions in a network of red wood ants and symbiotic arthropods living in their nests. We tested whether the ant workers indirectly affected survival of a symbiotic prey species (Cyphoderus albinus) by changing the density and/or traits of three symbiotic predators, i.e., Mastigusa arietina, Thyreosthenius biovatus and Stenus aterrimus, provoking, respectively, low, medium and high ant aggression. An ant nest is highly heterogeneous in ant worker density and the number of aggressive interactions towards symbionts increases with worker density. We, therefore, hypothesized that varying ant density could indirectly impact prey-predator interactions of the associated symbiont community. Ants caused trait-mediated indirect effects in all three prey-predator interactions, by affecting the prey capture rate of the symbiotic predators at different worker densities. Prey capture rate of the highly and moderately aggressed spider predators M. arietina and T. biovatus decreased with ant density, whereas the prey capture rate of the weakly aggressed beetle predator S. aterrimus increased. Ants also induced density-mediated indirect interactions as high worker densities decreased the survival rate of the two predatory spider species. These results demonstrate for the first time that a host can indirectly mediate the trophic interactions between associated symbionts. In addition, we show that a single host can induce opposing indirect effects depending on its degree of aggression towards the symbionts.status: publishe
Dynamical evolution of the mass function and radial profile of the Galactic globular cluster system
Evolution of the mass function (MF) and radial distribution (RD) of the
Galactic globular cluster (GC) system is calculated using an advanced and a
realistic Fokker-Planck (FP) model that considers dynamical friction,
disc/bulge shocks and eccentric cluster orbits. We perform hundreds of FP
calculations with different initial cluster conditions, and then search a
wide-parameter space for the best-fitting initial GC MF and RD that evolves
into the observed present-day Galactic GC MF and RD. By allowing both MF and RD
of the initial GC system to vary, which is attempted for the first time in the
present Letter, we find that our best-fitting models have a higher peak mass
for a lognormal initial MF and a higher cut-off mass for a power-law initial MF
than previous estimates, but our initial total masses in GCs, M_{T,i} =
1.5-1.8x10^8 Msun, are comparable to previous results. Significant findings
include that our best-fitting lognormal MF shifts downward by 0.35 dex during
the period of 13 Gyr, and that our power-law initial MF models well-fit the
observed MF and RD only when the initial MF is truncated at >~10^5 Msun. We
also find that our results are insensitive to the initial distribution of orbit
eccentricity and inclination, but are rather sensitive to the initial
concentration of the clusters and to how the initial tidal radius is defined.
If the clusters are assumed to be formed at the apocentre while filling the
tidal radius there, M_{T,i} can be as high as 6.9x10^8 Msun, which amounts to
~75 per cent of the current mass in the stellar halo.Comment: To appear in May 2008 issue of MNRAS, 386, L6
Nonlinear ac conductivity of one-dimensional Mott insulators
We discuss a semiclassical calculation of low energy charge transport in
one-dimensional (1d) insulators with a focus on Mott insulators, whose charge
degrees of freedom are gapped due to the combination of short range
interactions and a periodic lattice potential. Combining RG and instanton
methods, we calculate the nonlinear ac conductivity and interpret the result in
terms of multi-photon absorption. We compare the result of the semiclassical
calculation for interacting systems to a perturbative, fully quantum mechanical
calculation of multi-photon absorption in a 1d band insulator and find good
agreement when the number of simultaneously absorbed photons is large.Comment: Dedicated to Thomas Nattermann on the occasion of his 60th birthday.
To appear in JSTAT. 5 pages, 2 figure
Formation of fold and thrust belts on Venus due to horizontal shortening of a laterally heterogeneous lithosphere
An outstanding question relevant to understanding the tectonics of Venus is the mechanism of formation of fold and thrust belts, such as the mountain belts that surround Lakshmi Planum in western Ishtar Terra. These structures are typically long (hundreds of km) and narrow (many tens of km), and are often located at the margins of relatively high (km-scale) topographic rises. Previous studies have attempted to explain fold and thrust belts in various areas of Venus in the context of viscous and brittle wedge theory. However, while wedge theory can explain the change in elevation from the rise to the adjacent lowland, it fails to account for a fundamental aspect of the deformation, i.e., the topographic high at the edge of the rise. In this study we quantitatively explore the hypothesis that fold and thrust belt morphology on Venus can alternatively be explained by horizontal shortening of a lithosphere that is laterally heterogeneous, due either to a change in thickness of the lithosphere or the crust. Lateral heterogeneities in lithosphere structure may arise in response to thermal thinning or extensive faulting, while variations in crustal thickness may arise due to either spatially variable melting of mantle material or by horizontal shortening of the crust. In a variable thickness lithosphere or crust that is horizontally shortened, deformation will tend to localize in the vicinity of thickness heterogeneity, resulting in a higher component of dynamic topography there as compared to elsewhere in the shortening lithosphere. This mechanism may thus provide a simple explanation for the topographic high at the edge of the rise
Globular cluster systems II: On the formation of old globular clusters and their sites of formation
We studied the metal-poor globular cluster (GC) populations of a large
variety of galaxies (47 galaxies spanning about 10mag in absolute brightness)
and compared their mean [Fe/H] with the properties of the host galaxies. The
mean [Fe/H] of the systems lie in the -1.65<[Fe/H]<-1.20 range (74% of the
population). Using only GC systems with more than 6 objects detected, 85% of
the population lie within -1.65<[Fe/H]<-1.20. The relation between the mean
[Fe/H] of the metal-poor GC systems and the Mv of their host galaxies presents
a very low slope which includes zero. An analysis of the correlation of the
mean [Fe/H] with other galaxy properties also leads to the conclusion that no
strong correlation exists. The lack of correlation suggests a formation of all
metal-poor GC in similar gas fragments. A weak correlation might exist between
mean [Fe/H] of the metal-poor GC and host galaxy metallicity. This would imply
that some fragments in which metal-poor GC formed were already embedded in the
larger dark matter halo of the final galaxy (as oppose to being independent
satellites that were accreted later). Our result suggests a homogeneous
formation of metal-poor GC in all galaxies, in typical fragments of masses
around 10^9-10^10 solar masses with very similar metallicities, compatible with
hierarchical formation scenarios for galaxies. We compared the mean [Fe/H] of
the metal-poor GC populations with the typical metallicities of high-z objects.
If we add the constraint that GC need a high column density of gas to form,
DLAs are the most likely sites for the formation of metal-poor GC populations.Comment: accepted for publication in AJ, scheduled for the May 2001 issu
Screening current effects in Josephson junction arrays
The purpose of this work is to compare the dynamics of arrays of Josephson
junctions in presence of magnetic field in two different frameworks: the so
called XY frustrated model with no self inductance and an approach that takes
into account the screening currents (considering self inductances only). We
show that while for a range of parameters the simpler model is sufficiently
accurate, in a region of the parameter space solutions arise that are not
contained in the XY model equations.Comment: Figures available from the author
- …