139 research outputs found

    Mutation in mitochondrial complex I ND6 subunit is associated with defective response to hypoxia in human glioma cells

    Get PDF
    BACKGROUND: Hypoxia-tolerant human glioma cells reduce oxygen consumption rate in response to oxygen deficit, a defense mechanism that contributes to survival under moderately hypoxic conditions. In contrast, hypoxia-sensitive cells lack this ability. As it has been previously shown that hypoxia-tolerant (M006x, M006xLo, M059K) and -sensitive (M010b) glioma cells express differences in mitochondrial function, we investigated whether mitochondrial DNA-encoded mutations are associated with differences in the initial response to oxygen deficit. RESULTS: The mitochondrial genome was sequenced and 23 mtDNA alterations were identified, one of which was an unreported mutation (T-C transition in base pair 14634) in the hypoxia-sensitive cell line, M010b, that resulted in a single amino acid change in the gene encoding the ND6 subunit of NADH:ubiquinone oxidoreductase (Complex I). The T14634C mutation did not abrogate ND6 protein expression, however, M010b cells were more resistant to rotenone, an agent used to screen for Complex I mutations, and adriamycin, an agent activated by redox cycling. The specific function of mtDNA-encoded, membrane-embedded Complex I ND subunits is not known at present. Current models suggest that the transmembrane arm of Complex I may serve as a conformationally driven proton channel. As cellular respiration is regulated, in part, by proton flux, we used homology-based modeling and computational molecular biology to predict the 3D structure of the wild type and mutated ND6 proteins. These models predict that the T14634C mutation alters the structure and orientation of the trans-membrane helices of the ND6 protein. CONCLUSION: Complex I ND subunits are mutational hot spots in tumor mtDNA. Genetic changes that alter Complex I structure and function may alter a cell's ability to respond to oxygen deficit and consolidate hypoxia rescue mechanisms, and may contribute to resistance to chemotherapeutic agents that require redox cycling for activation

    Meta-analysis of Genome Wide Association Studies Identifies Genetic Markers of Late Toxicity Following Radiotherapy for Prostate Cancer.

    Get PDF
    Nearly 50% of cancer patients undergo radiotherapy. Late radiotherapy toxicity affects quality-of-life in long-term cancer survivors and risk of side-effects in a minority limits doses prescribed to the majority of patients. Development of a test predicting risk of toxicity could benefit many cancer patients. We aimed to meta-analyze individual level data from four genome-wide association studies from prostate cancer radiotherapy cohorts including 1564 men to identify genetic markers of toxicity. Prospectively assessed two-year toxicity endpoints (urinary frequency, decreased urine stream, rectal bleeding, overall toxicity) and single nucleotide polymorphism (SNP) associations were tested using multivariable regression, adjusting for clinical and patient-related risk factors. A fixed-effects meta-analysis identified two SNPs: rs17599026 on 5q31.2 with urinary frequency (odds ratio [OR] 3.12, 95% confidence interval [CI] 2.08-4.69, p-value 4.16×10(-8)) and rs7720298 on 5p15.2 with decreased urine stream (OR 2.71, 95% CI 1.90-3.86, p-value=3.21×10(-8)). These SNPs lie within genes that are expressed in tissues adversely affected by pelvic radiotherapy including bladder, kidney, rectum and small intestine. The results show that heterogeneous radiotherapy cohorts can be combined to identify new moderate-penetrance genetic variants associated with radiotherapy toxicity. The work provides a basis for larger collaborative efforts to identify enough variants for a future test involving polygenic risk profiling.This work was supported by Cancer Research UK (C1094/A11728 to CMLW and NGB for the RAPPER study, C26900/A8740 to GCB, and C8197/A10865 to AMD), the Royal College of Radiologists (C26900/ A8740 to GCB), the National Institute for Health Research (GCB; no grant number), Addenbrooke's Charitable Trust (GCB; no grant number), Institute of Cancer Research (National Institute for Health Research) Biomedical Research Centre (C46/A2131 to DPD and SG), the National Institute for Health Research Cambridge Biomedical Research Centre (NGB; no grant number), UK Medical Research Council (RG70550 to LD), the Joseph Mitchell Trust (AMD; no grant number), the Experimental Cancer Medicine Centre (CMLW; no grant number), Cancer Research UK Program grant Section of Radiotherapy (C33589/ A19727 to SLG), the United States National Institutes of Health (1R01CA134444 to BSR and HO, 2P30CA014520-34 to SB, and 1K07CA187546-01A1 to SLK), the American Cancer Society (RSGT-05- 200-01-CCE to BSR), the U.S. Department of Defense (PC074201 to BSR and HO), Mount Sinai Tisch Cancer Institute Developmental Fund Award (BSR; no grant number), the Instituto de Salud Carlos III (FIS PI10/00164 and PI13/02030 to AV and PI13/01136 to AC), Fondo Europeo de Desarrollo Regional (FEDER 2007–2013 to AV and AC; no grant number), Instituto de Salud Carlos III (FIS PI10/00164 and PI13/ 02030 to AV and PI13/01136 to AC), Xunta de Galicia and the European Social Fund (POS-A/2013/034 to LF), and the Alberta Cancer Board Research Initiative Program (103.0393.71760001404 to MP). AMD receives support from the REQUITE study, which is funded by the European Union's Seventh Framework Programme for research, technological development and demonstration under grant agreement no. 601826. Laboratory infrastructure for the RAPPER study was funded by Cancer Research UK [C8197/A10123] and the Manchester Experimental Cancer Medicine Centre. The RAPPER cohort comprises individuals and data recruited into the RT01 and CHHiP UK radiotherapy trials. The RT01 trial was supported by the UK Medical Research Council. The CHHiP trial (CRUK/06/016) was supported by the Department of Health and Cancer Research UK (C8262/A7253); trial recruitment was facilitated within centers by the National Institute for Health Research Cancer Research Network. DPD and SLG acknowledge NHS funding to the NIHR Biomedical Research Centre at the Royal Marsden NHS Foundation Trust and Institute of Cancer Research.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.ebiom.2016.07.02

    Risk factors for late bowel and bladder toxicities in NRG Oncology prostate cancer trials of high-risk patients: A meta-analysis of physician-rated toxicities

    Get PDF
    Purpose: A meta-analysis of sociodemographic variables and their association with late (\u3e180 days from start of radiation therapy[RT]) bowel, bladder, and clustered bowel and bladder toxicities was conducted in patients with high-risk (clinical stages T2c-T4b or Gleason score 8-10 or prostate-specific antigen level \u3e20) prostate cancer. Methods and materials: Three NRG trials (RTOG 9202, RTOG 9413, and RTOG 9406) that accrued from 1992 to 2000 were used. Late toxicities were measured with the Radiation Therapy Oncology Group Late Radiation Morbidity Scale. After controlling for study, age, Karnofsky Performance Status, and year of accrual, sociodemographic variables were added to the model for each outcome variable of interest in a stepwise fashion using the Fine-Gray regression models with an entry criterion of 0.05. Results: A total of 2432 patients were analyzed of whom most were Caucasian (76%), had a KPS score of 90 to 100 (92%), and received whole-pelvic RT+HT (67%). Of these patients, 13 % and 16% experienced late grade ≥2 bowel and bladder toxicities, respectively, and 2% and 3% experienced late grade ≥3 bowel and bladder toxicities, respectively. Late grade ≥2 clustered bowel and bladder toxicities were seen in approximately 1% of patients and late grade ≥3 clustered toxicities were seen in 2 patients ( Conclusions: Patients with high-risk prostate cancer who receive whole-pelvic RT+LT HT are more likely to have a grade ≥2 bowel toxicity than those who receive prostate-only RT. LT bowel and bladder toxicities were infrequent. Future studies will need to confirm these findings utilizing current radiation technology and patient-reported outcomes

    Enumerating pelvic recurrence following radical cystectomy for bladder cancer: A canadian multi-institutional study

    Get PDF
    Introduction: We aimed to enumerate the rate of pelvic recurrence following radical cystectomy at university-affiliated hospitals in Canada. Methods: Canadian, university-affiliated hospitals were invited to participate. They were asked to identify the first 10 consecutive patients undergoing radical cystectomy starting January 1, 2005, who had urothelial carcinoma stages pT3/T4 N0-2 M0. The first 10 consecutive cases starting January 1, 2005 who met these criteria were the patients submitted by that institution with information regarding tumour stage, age, number of nodes removed, and last known clinical status in regard to recurrence and patterns of failure. Results: Of the 111 patients, 80% had pT3 and 20% pT4 disease, with 62% being node-negative, 14% pN1, and 27% pN2; 57% had 10 or more nodes removed. Cumulative incidence of pelvic relapse was 40% among the entire group Conclusions: This review demonstrates a high rate of pelvic tumour recurrence following radical cystectomy for pT3/T4 urothelial cancer

    Large-Scale Meta-GWAS Reveals Common Genetic Factors Linked to Radiation-Induced Acute Toxicities across Cancers

    Get PDF
    BACKGROUND: This study was designed to identify common genetic susceptibility and shared genetic variants associated with acute radiation-induced toxicity (RIT) across four cancer types (prostate, head and neck, breast, and lung).METHODS: A GWAS meta-analysis was performed using 19 cohorts including 12,042 patients. Acute standardized total average toxicity (rSTATacute) was modelled using a generalized linear regression model for additive effect of genetic variants adjusted for demographic and clinical covariates. LD score regression estimated shared SNP-based heritability of rSTATacute in all patients and for each cancer type.RESULTS: Shared SNP-based heritability of STATacute among all cancer types was estimated at 10% (se = 0.02), and was higher for prostate (17%, se = 0.07), head and neck (27%, se = 0.09), and breast (16%, se = 0.09) cancers. We identified 130 suggestive associated SNPs with rSTATacute (5.0x10-8&lt;P-value&lt;1.0x10-5) across 25 genomic regions. rs142667902 showed the strongest association (effect allele A; effect size -0.17; P-value=1.7x10-7), which is located near DPPA4, encoding a protein involved in pluripotency in stem cells, which are essential for repair of radiation-induced tissue injury. Gene-set enrichment analysis identified 'RNA splicing via endonucleolytic cleavage and ligation' (P = 5.1 x10-6, Pcorrected =0.079) as the top gene set associated with rSTATacute among all patients. In-silico gene expression analysis showed the genes associated with rSTATacute were statistically significantly up-regulated in skin (not sun exposed Pcorrected=0.004; sun exposed Pcorrected=0.026).CONCLUSIONS: There is shared SNP-based heritability for acute RIT across and within individual cancer sites. Future meta-GWAS among large radiotherapy patient cohorts are worthwhile to identify the common causal variants for acute radiotoxicity across cancer types.</p

    Duration of Androgen Deprivation in Locally Advanced Prostate Cancer: Long-Term Update of NRG Oncology RTOG 9202

    Full text link
    PurposeTrial RTOG 9202 was a phase 3 randomized trial designed to determine the optimal duration of androgen deprivation therapy (ADT) when combined with definitive radiation therapy (RT) in the treatment of locally advanced nonmetastatic adenocarcinoma of the prostate. Long-term follow-up results of this study now available are relevant to the management of this disease.Methods and materialsMen (N=1554) with adenocarcinoma of the prostate (cT2c-T4, N0-Nx) with a prostate-specific antigen (PSA) &lt;150 ng/mL and no evidence of distant metastasis were randomized (June 1992 to April 1995) to short-term ADT (STAD: 4 months of flutamide 250 mg 3 times per day and goserelin 3.6 mg per month) and definitive RT versus long-term ADT (LTAD: STAD with definitive RT plus an additional 24 months of monthly goserelin).ResultsAmong 1520 protocol-eligible and evaluable patients, the median follow-up time for this analysis was 19.6 years. In analysis adjusted for prognostic covariates, LTAD improved disease-free survival (29% relative reduction in failure rate, P&lt;.0001), local progression (46% relative reduction, P=.02), distant metastases (36% relative reduction, P&lt;.0001), disease-specific survival (30% relative reduction, P=.003), and overall survival (12% relative reduction, P=.03). Other-cause mortality (non-prostate cancer) did not differ (5% relative reduction, P=.48).ConclusionsLTAD and RT is superior to STAD and RT for the treatment of locally advanced nonmetastatic adenocarcinoma of the prostate and should be considered the standard of care

    Germline variation at 8q24 and prostate cancer risk in men of European ancestry

    Get PDF
    Chromosome 8q24 is a susceptibility locus for multiple cancers, including prostate cancer. Here we combine genetic data across the 8q24 susceptibility region from 71,535 prostate cancer cases and 52,935 controls of European ancestry to define the overall contribution of germline variation at 8q24 to prostate cancer risk. We identify 12 independent risk signals for prostate cancer (p < 4.28 × 10−15), including three risk variants that have yet to be reported. From a polygenic risk score (PRS) model, derived to assess the cumulative effect of risk variants at 8q24, men in the top 1% of the PRS have a 4-fold (95%CI = 3.62–4.40) greater risk compared to the population average. These 12 variants account for ~25% of what can be currently explained of the familial risk of prostate cancer by known genetic risk factors. These findings highlight the overwhelming contribution of germline variation at 8q24 on prostate cancer risk which has implications for population risk stratification

    Trans-ancestry genome-wide association meta-analysis of prostate cancer identifies new susceptibility loci and informs genetic risk prediction.

    Get PDF
    Prostate cancer is a highly heritable disease with large disparities in incidence rates across ancestry populations. We conducted a multiancestry meta-analysis of prostate cancer genome-wide association studies (107,247 cases and 127,006 controls) and identified 86 new genetic risk variants independently associated with prostate cancer risk, bringing the total to 269 known risk variants. The top genetic risk score (GRS) decile was associated with odds ratios that ranged from 5.06 (95% confidence interval (CI), 4.84-5.29) for men of European ancestry to 3.74 (95% CI, 3.36-4.17) for men of African ancestry. Men of African ancestry were estimated to have a mean GRS that was 2.18-times higher (95% CI, 2.14-2.22), and men of East Asian ancestry 0.73-times lower (95% CI, 0.71-0.76), than men of European ancestry. These findings support the role of germline variation contributing to population differences in prostate cancer risk, with the GRS offering an approach for personalized risk prediction
    corecore