27 research outputs found

    Highly selective hydrogenation of furfural over supported Pt nanoparticles under mild conditions

    Get PDF
    The selective liquid phase hydrogenation of furfural to furfuryl alcohol over Pt nanoparticles supported on SiO₂, ZnO, γ-Al2O₃, CeO₂ is reported under extremely mild conditions. Ambient hydrogen pressure, and temperatures as low as 50 °C are shown sufficient to drive furfural hydrogenation with high conversion and >99% selectivity to furfuryl alcohol. Strong support and solvent dependencies are observed, with methanol and n-butanol proving excellent solvents for promoting high furfuryl alcohol yields over uniformly dispersed 4 nm Pt nanoparticles over MgO, CeO₂ and γ-Al₂O₃. In contrast, non-polar solvents conferred poor furfural conversion, while ethanol favored acetal by-product formation. Furfural selective hydrogenation can be tuned through controlling the oxide support, reaction solvent and temperature

    Mott-Hubbard insulators for systems with orbital degeneracy

    Full text link
    We study how the electron hopping reduces the Mott-Hubbard band gap in the limit of a large Coulomb interaction U and as a function of the orbital degeneracy N. The results support the conclusion that the hopping contribution grows as roughly \sqrt{N}W, where W is the one-particle band width, but in certain models a crossover to a \sim NW behavior is found for a sufficiently large N.Comment: 7 pages, revtex, 6 figures more information at http://www.mpi-stuttgart.mpg.de/dokumente/andersen/fullerene

    Atom efficient PtCu bimetallic catalysts and ultra dilute alloys for the selective hydrogenation of furfural

    Get PDF
    A range of Pt:Cu bimetallic nanoparticles were investigated for the liquid-phase selective hydrogenation of furfural, an important platform biomass feedstock. Alloying of the two metals had a profound effect on the overall catalytic activity, providing superior rates of reaction and achieving the needed high selectivity towards furfuryl alcohol. Furthermore, we investigated the catalytic activity of an Ultra Dilute Alloy (UDA) formed via the galvanic replacement of Cu atoms by Pt atoms on dispersed host Cu nanoparticles (atomic ratio Pt:Cu 1:20). This UDA, after overcoming an induction period, exhibits exceptionally high initial rates of hydrogenation under modest hydrogen pressures of 10 and 20 bar, rivalling the catalytic turnover for the monometallic Pt (containing 12 times more Pt), and outdoing the pure Cu or other compositions of bimetallic nanoparticle alloy catalysts. These atom efficient catalysts are ideal candidates for the valorization of furfural due to their activity and vastly greater economic viability

    Facile synthesis of hierarchical Cu2O nanocubes as visible light photocatalysts

    Get PDF
    Hierarchically structured Cu2O nanocubes have been synthesized by a facile and cost-effective one-pot, solution phase process. Self-assembly of 5 nm Cu2O nanocrystallites induced through reduction by glucose affords a mesoporous 375 nm cubic architecture with superior visible light photocatalytic performance in both methylene blue dye degradation and hydrogen production from water than conventional non-porous analogues. Hierarchical nanocubes offer improved accessible surface active sites and optical/electronic properties, which act in concert to confer 200–300% rate-enhancements for the photocatalytic decomposition of organic pollutants and solar fuels

    The effect of metal precursor on copper phase dispersion and nanoparticle formation for the catalytic transformations of furfural

    Get PDF
    The formation of copper-based catalysts ranging from nanoparticles to isolated and dimeric Cu species supported on nanophased alumina is reported and utilised for the catalytic liquid-phase hydrogenation of furfural. The materials were synthesised via wet impregnation using various copper precursors (nitrate, acetate and sulphate) at two different loadings. A high Cu loading (5.0 wt.%) led to the formation of well-defined nanoparticles, while a lower loading (1.0 wt.%) generated a highly dispersed phase consisting mostly of atomic and dimeric Cu species dispersed on Al 2O 3. The catalytic reaction was found to be structure sensitive, promoting decarbonylation reactions with low Cu loading. Copper sulphate derived catalysts were found to severely decrease furfuryl alcohol selectivity from 94.6% to 0.8%, promoting the formation of side reactions. The sulphur-free catalysts represent a greener and more sustainable alternative to the toxic catalysts currently used in industry, operating at milder conditions of 50 °C and 1.5 bar H 2

    Control of zeolite microenvironment for propene synthesis from methanol

    Get PDF
    Optimising the balance between propene selectivity, propene/ethene ratio and catalytic stability and unravelling the explicit mechanism on formation of the first carbon–carbon bond are challenging goals of great importance in state-of-the-art methanol-to-olefin (MTO) research. We report a strategy to finely control the nature of active sites within the pores of commercial MFI-zeolites by incorporating tantalum(V) and aluminium(III) centres into the framework. The resultant TaAlS-1 zeolite exhibits simultaneously remarkable propene selectivity (51%), propene/ethene ratio (8.3) and catalytic stability (>50 h) at full methanol conversion. In situ synchrotron X-ray powder diffraction, X-ray absorption spectroscopy and inelastic neutron scattering coupled with DFT calculations reveal that the first carbon–carbon bond is formed between an activated methanol molecule and a trimethyloxonium intermediate. The unprecedented cooperativity between tantalum(V) and Brønsted acid sites creates an optimal microenvironment for efficient conversion of methanol and thus greatly promotes the application of zeolites in the sustainable manufacturing of light olefins.We thank EPSRC (EP/P011632/1), the Royal Society, National Natural Science Foundation of China (21733011, 21890761, 21673076), and the University of Manchester for funding. We thank EPSRC for funding and the EPSRC National Service for EPR Spectroscopy at Manchester. A.M.S. is supported by a Royal Society Newton International Fellowship. We are grateful to the STFC/ISIS Facility, Oak Ridge National Laboratory (ORNL) and Diamond Light Source (DLS) for access to the beamlines TOSCA/MAPS, VISION and I11/I20, respectively. We acknowledge Dr. L. Keenan for help at I20 beamline (SP23594-1). UK Catalysis Hub is kindly thanked for resources and support provided via our membership of the UK Catalysis Hub Consortium and funded by EPSRC grant: EP/R026939/1, EP/R026815/1, EP/R026645/1, EP/R027129/1 or EP/M013219/1 (biocatalysis). We acknowledge the support of The University of Manchester’s Dalton Cumbrian Facility (DCF), a partner in the National Nuclear User Facility, the EPSRC UK National Ion Beam Centre and the Henry Royce Institute. We recognise Dr. R. Edge and Dr. K. Warren for their assistance during the 60Co γ-irradiation processes. We thank Prof. A. Jentys from the Technical University of Munich for the measurement of the INS spectrum of iso-butene. We thank C. Webb, E. Enston and G. Smith for help with GC–MS; Dr. L. Hughes for help with SEM and EDX; M. Kibble for help at TOSCA/MAPS beamlines. Computing resources (time on the SCARF compute cluster for some of the CASTEP calculations) was provided by STFC’s e-Science facility. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by ORNL. The computing resources at ORNL were made available through the VirtuES and the ICE-MAN projects, funded by Laboratory Directed Research and Development programme and Compute and Data Environment for Science (CADES

    Participatory game prototyping – balancing domain content and playability in a serious game design for the energy transition

    Get PDF
    Game design mostly engages future players as users and testers, whereas in the field of serious game design, approaches involving players more substantially are slowly emerging. This paper documents the participatory prototyping process of Energy Safari, a serious game for the energy transition in the Province of Groningen, and reports on the differences of the contributions made to the game development by separate groups of stakeholders. Each group contributed the most to the game elements that are most relevant to their interests. Overall, this study points to the potential of participatory game prototyping as a method to develop serious games that are balanced both in terms of domain content and playability, are meaningful for future players, and well embedded in the local context

    Catalysing sustainable fuel and chemical synthesis

    Get PDF
    Concerns over the economics of proven fossil fuel reserves, in concert with government and public acceptance of the anthropogenic origin of rising CO2 emissions and associated climate change from such combustible carbon, are driving academic and commercial research into new sustainable routes to fuel and chemicals. The quest for such sustainable resources to meet the demands of a rapidly rising global population represents one of this century’s grand challenges. Here, we discuss catalytic solutions to the clean synthesis of biodiesel, the most readily implemented and low cost, alternative source of transportation fuels, and oxygenated organic molecules for the manufacture of fine and speciality chemicals to meet future societal demands

    P25@CoAl layered double hydroxide heterojunction nanocomposites for CO2 photocatalytic reduction

    Get PDF
    Artificial photosynthesis driven by inorganic photocatalysts offers a promising route to renewable solar fuels, however efficient CO2 photoreduction remains a challenge. A family of hierarchical nanocomposites, comprising P25 nanoparticles encapsulated within microporous CoAl-layered double hydroxides (CoAl-LDHs) were prepared via a one-pot hydrothermal synthesis. Heterojunction formation between the visible light absorbing CoAl-LDH and UV light absorbing P25 semiconductors extends utilisation of the solar spectrum, while the solid basicity of the CoAl-LDH increases CO2 availability at photocatalytic surfaces. Matching of the semiconductor band structures and strong donor–acceptor coupling improves photoinduced charge carrier separation and transfer via the heterojunction. Hierarchical P25@CoAl-LDH nanocomposites exhibit good activity and selectivity (>90%) for aqueous CO2 photoreduction to CO, without a sacrificial hole acceptor. This represents a facile and cost-effective strategy for the design and development of LDH-based nanomaterials for efficient photocatalysis for renewable solar fuel production from particularly CO2 and aqueous water
    corecore