5,014 research outputs found
Emergence of atom-light-mirror entanglement inside an optical cavity
We propose a scheme for the realization of a hybrid, strongly
quantum-correlated system formed of an atomic ensemble surrounded by a
high-finesse optical cavity with a vibrating mirror. We show that the steady
state of the system shows tripartite and bipartite continuous variable
entanglement in experimentally accessible parameter regimes, which is robust
against temperature
Utilizing ERTS imagery to detect plant diseases and nutrient deficiencies, soil types and soil moisture levels
The author has identified the following significant results. ERTS-1 imagery may be used to delineate soil associations. It does have the capacity to divide soils into groups such that their land use and management would be similar. It offers definite potential for making grass flood-plain, wetland, river shoreline, and land use change surveys. Production of volume strata and forest type from the two usable bands of ERTS-1 imagery were of questionable value. No imagery was received for evaluation during the time of year when maine dwarf mosaic virus and southern corn leaf blight were active
Utilizing ERTS imagery to detect plant diseases and nutrient deficiencies, soil types and soil moisture levels
There are no author-identified significant results in this report
A Preliminary Study of Solar Powered Aircraft and Associated Power Trains
The feasibility of regeneratively powered solar high altitude powered platform (HAPP) remotely piloted vehicles was assessed. Those technologies which must be pursued to make long duration solar HAPPs feasible are recommended. A methodology which involved characterization and parametric analysis of roughly two dozen variables to determine vehicles capable of fulfilling the primary mission are defined. One of these vehicles was then conceptually designed. Variations of each major design parameter were investigated along with state-of-the-art changes in power train component capabilities. The midlatitude mission studied would be attainable by a solar HAPP if fuel cell, electrolyzer and photovoltaic technologies are pursued. Vehicles will be very large and have very lightweight structures in order to attain the combinations of altitude and duration required by the primary mission
Development of mainshaft seals for advanced air breathing propulsion systems, phase 1 Final report, 25 Jun. 1965 - 25 Jul. 1967
Comparison of gas film mainshaft seals with rubbing contract seals for high temperature, high speed, and high pressure gas turbine application
Pulsed flows at the high-altitude cusp poleward boundary, and associated ionospheric convection and particle signatures, during a cluster - FAST - SuperDARN - sondrestrom conjunction under a southwest
Particle and magnetic field observations during a magnetic conjunction Cluster 1-FAST-Søndrestrøm within the field of view of SuperDARN radars on 21 January 2001 allow us to draw a detailed, comprehensive and self-consistent picture at three heights of signatures associated with transient reconnection under a steady south-westerly IMF (clock angle ≈130◦). Cluster 1 was outbound through the high altitude (∼12RE ) exterior northern cusp tailward of the bifurcation line (geomagnetic Bx>0) when a solar wind dynamic pressure release shifted the spacecraft into a boundary layer downstream of the cusp. The centerpiece of the investigation is a series of flow bursts observed there by the spacecraft, which were accompanied by strong field pertur- bations and tailward flow deflections. Analysis shows these to be Alfven waves. We interpret these flow events as being due to a sequence of reconnected flux tubes, with field-aligned currents in the associated Alfven waves carrying stresses to the underlying ionosphere, a view strengthened by the other observations. At the magnetic footprint of the region of Cluster flow bursts, FAST observed an ion energy- latitude disperison of the stepped cusp type, with individual cusp ion steps corresponding to individual flow bursts. Simultaneously, the SuperDARN Stokkseyri radar observed very strong poleward-moving radar auroral forms (PMRAFs) which were conjugate to the flow bursts at Cluster. FAST was traversing these PMRAFs when it observed the cusp ion steps. The Søndrestrøm radar observed pulsed ionospheric flows (PIFs) just poleward of the convection reversal boundary. As at Cluster, the flow was eastward (tailward), implying a coherent eastward (tailward) motion of the hypothesized open flux tubes. The joint Søndrestrøm and FAST observations indicate that the open/closed field line boundary was equatorward of the convection reversal boundary by ∼2 deg. The unprecedented accuracy of the conjunction argues strongly for the validity of the interpretation of the various signatures as resulting from transient reconnection. In particular, the cusp ion steps arise on this pass from this origin, in consonance with the original pulsating cusp model. The observations point to the need of extending current ideas on the response of the ionosphere to transient reconnection. Specifically, it argues in favor of re-establishing the high-latitude boundary layer downstream of the cusp as an active site of momentum transfer
New Hampshire rural towns\u27 comparative road burdens and road services, Bulletin, no. 339
The Bulletin is a publication of the New Hampshire Agricultural Experiment Station, College of Life Sciences and Agriculture, University of New Hampshire, Durham, New Hampshire
Advanced transport operating system software upgrade: Flight management/flight controls software description
The Flight Management/Flight Controls (FM/FC) software for the Norden 2 (PDP-11/70M) computer installed on the NASA 737 aircraft is described. The software computes the navigation position estimates, guidance commands, those commands to be issued to the control surfaces to direct the aircraft in flight based on the modes selected on the Advanced Guidance Control System (AGSC) mode panel, and the flight path selected via the Navigation Control/Display Unit (NCDU)
Mechanical Control of Spin States in Spin-1 Molecules and the Underscreened Kondo Effect
The ability to make electrical contact to single molecules creates
opportunities to examine fundamental processes governing electron flow on the
smallest possible length scales. We report experiments in which we controllably
stretch individual cobalt complexes having spin S = 1, while simultaneously
measuring current flow through the molecule. The molecule's spin states and
magnetic anisotropy were manipulated in the absence of a magnetic field by
modification of the molecular symmetry. This control enabled quantitative
studies of the underscreened Kondo effect, in which conduction electrons only
partially compensate the molecular spin. Our findings demonstrate a mechanism
of spin control in single-molecule devices and establish that they can serve as
model systems for making precision tests of correlated-electron theories.Comment: main text: 5 pages, 4 figures; supporting information attached; to
appear in Science
- …