28,350 research outputs found

    An investigation of rooftop STOL port aerodynamics

    Get PDF
    An investigation into aerodynamic problems associated with large building rooftop STOLports was performed. Initially, a qualitative flow visualization study indicated two essential problems: (1) the establishment of smooth, steady, attached flow over the rooftop, and (2) the generation of acceptable crosswind profile once (1) has been achieved. This study indicated that (1) could be achieved by attaching circular-arc rounded edge extensions to the upper edges of the building and that crosswind profiles could be modified by the addition of porous vertical fences to the lateral edges of the rooftop. Important fence parameters associated with crosswind alteration were found to be solidity, fence element number and spacing. Large scale building induced velocity fluctuations were discovered for most configurations tested and a possible explanation for their occurrence was postulated. Finally, a simple equation relating fence solidity to the resulting velocity profile was developed and tested for non-uniform single element fences with 30 percent maximum solidity

    Thomas-Fermi versus one- and two-dimensional regimes of a trapped dipolar Bose-Einstein condensate

    Full text link
    We derive the criteria for the Thomas-Fermi regime of a dipolar Bose-Einstein condensate in cigar, pancake and spherical geometries. This also naturally gives the criteria for the mean-field one- and two-dimensional regimes. Our predictions, including the Thomas-Fermi density profiles, are shown to be in excellent agreement with numerical solutions. Importantly, the anisotropy of the interactions has a profound effect on the Thomas-Fermi/low-dimensional criteria.Comment: 5 pages, 2 figure

    Corrosion of simulated bearing components of three bearing steels in the presence of chloride-contaminated lubricant

    Get PDF
    Corrosion tests were run with AISI 52100, AISI M-50 and AMS 5794 under conditions that simulate the crevice corrosion found in aircraft ball and roller bearings rejected at overhaul for corrosion. Test specimens were fabricated that simulated the contacts of balls or rollers and the raceways. Corrosion cells were assembled in the presence of a lubricant contaminated with water and chloride ions. The cell was then thermally cycled between 339 K (150 F) and 276 K (37 F). The corrosion observed after 14 cycles was that of crevice and pitting corrosion typically found in aircraft bearings. AMS 5749 showed a very slight amount of corrosion. No appreciable differences were noted between AISI 52100 and AISI M-50, but both showed much greater corrosion than AMS 5749. The corrosion pits observed in AISI M-50 appeared to be fewer in number but generally deeper and larger than in AISI 52100

    Structure formation during the collapse of a dipolar atomic Bose-Einstein condensate

    Get PDF
    We investigate the collapse of a trapped dipolar Bose-Einstein condensate. This is performed by numerical simulations of the Gross-Pitaevskii equation and the novel application of the Thomas-Fermi hydrodynamic equations to collapse. We observe regimes of both global collapse, where the system evolves to a highly elongated or flattened state depending on the sign of the dipolar interaction, and local collapse, which arises due to dynamically unstable phonon modes and leads to a periodic arrangement of density shells, disks or stripes. In the adiabatic regime, where ground states are followed, collapse can occur globally or locally, while in the non-adiabatic regime, where collapse is initiated suddenly, local collapse commonly occurs. We analyse the dependence on the dipolar interactions and trap geometry, the length and time scales for collapse, and relate our findings to recent experiments.Comment: In this version (the published version) we have slightly rewritten the manuscript in places and have corrected some typos. 15 pages and 13 figure

    Inflation, Renormalization, and CMB Anisotropies

    Get PDF
    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish Relativity Meeting 2009 (ERE 09), Bilbao (Spain

    Chemical modification of poly(p-phenylene) for use in ablative compositions

    Get PDF
    Development of ablative materials based on modification of polyphenylene compounds is discussed. Chemical and physical properties are analyzed for application as heat resistant materials. Synthesis of linear polyphenylenes is described. Effects of exposure to oxyacetylene flame and composition of resultant char layer are presented
    • …
    corecore