42,136 research outputs found

    Inflation, Renormalization, and CMB Anisotropies

    Get PDF
    In single-field, slow-roll inflationary models, scalar and tensorial (Gaussian) perturbations are both characterized by a zero mean and a non-zero variance. In position space, the corresponding variance of those fields diverges in the ultraviolet. The requirement of a finite variance in position space forces its regularization via quantum field renormalization in an expanding universe. This has an important impact on the predicted scalar and tensorial power spectra for wavelengths that today are at observable scales. In particular, we find a non-trivial change in the consistency condition that relates the tensor-to-scalar ratio "r" to the spectral indices. For instance, an exact scale-invariant tensorial power spectrum, n_t=0, is now compatible with a non-zero ratio r= 0.12 +/- 0.06, which is forbidden by the standard prediction (r=-8n_t). Forthcoming observations of the influence of relic gravitational waves on the CMB will offer a non-trivial test of the new predictions.Comment: 4 pages, jpconf.cls, to appear in the Proceedings of Spanish Relativity Meeting 2009 (ERE 09), Bilbao (Spain

    Acceleration of the universe, vacuum metamorphosis, and the large-time asymptotic form of the heat kernel

    Full text link
    We investigate the possibility that the late acceleration observed in the rate of expansion of the universe is due to vacuum quantum effects arising in curved spacetime. The theoretical basis of the vacuum cold dark matter (VCDM), or vacuum metamorphosis, cosmological model of Parker and Raval is revisited and improved. We show, by means of a manifestly nonperturbative approach, how the infrared behavior of the propagator (related to the large-time asymptotic form of the heat kernel) of a free scalar field in curved spacetime causes the vacuum expectation value of its energy-momentum tensor to exhibit a resonance effect when the scalar curvature R of the spacetime reaches a particular value related to the mass of the field. we show that the back reaction caused by this resonance drives the universe through a transition to an accelerating expansion phase, very much in the same way as originally proposed by Parker and Raval. Our analysis includes higher derivatives that were neglected in the earlier analysis, and takes into account the possible runaway solutions that can follow from these higher-derivative terms. We find that the runaway solutions do not occur if the universe was described by the usual classical FRW solution prior to the growth of vacuum energy-density and negative pressure (i.e., vacuum metamorphosis) that causes the transition to an accelerating expansion of the universe in this theory.Comment: 33 pages, 3 figures. Submitted to Physical Review D15 (Dec 23, 2003). v2: 1 reference added. No other change

    Spatial curvature effects on molecular transport by diffusion

    Full text link
    For a substance diffusing on a curved surface, we obtain an explicit relation valid for very small values of the time, between the local concentration, the diffusion coefficient, the intrinsic spatial curvature and the time. We recover the known solution of Fick's law of diffusion in the flat space limit. In the biological context, this result would be useful in understanding the variations in the diffusion rates of integral proteins and other molecules on membranes.Comment: 10 page

    Quantum incompressibility of a falling Rydberg atom, and a gravitationally-induced charge separation effect in superconducting systems

    Get PDF
    Freely falling point-like objects converge towards the center of the Earth. Hence the gravitational field of the Earth is inhomogeneous, and possesses a tidal component. The free fall of an extended quantum object such as a hydrogen atom prepared in a high principal-quantum-number stretch state, i.e., a circular Rydberg atom, is predicted to fall more slowly that a classical point-like object, when both objects are dropped from the same height from above the Earth. This indicates that, apart from "quantum jumps," the atom exhibits a kind of "quantum incompressibility" during free fall in inhomogeneous, tidal gravitational fields like those of the Earth. A superconducting ring-like system with a persistent current circulating around it behaves like the circular Rydberg atom during free fall. Like the electronic wavefunction of the freely falling atom, the Cooper-pair wavefunction is "quantum incompressible." The ions of the ionic lattice of the superconductor, however, are not "quantum incompressible," since they do not possess a globally coherent quantum phase. The resulting difference during free fall in the response of the nonlocalizable Cooper pairs of electrons and the localizable ions to inhomogeneous gravitational fields is predicted to lead to a charge separation effect, which in turn leads to a large repulsive Coulomb force that opposes the convergence caused by the tidal, attractive gravitational force on the superconducting system. A "Cavendish-like" experiment is proposed for observing the charge separation effect induced by inhomogeneous gravitational fields in a superconducting circuit. This experiment would demonstrate the existence of a novel coupling between gravity and electricity via macroscopically coherent quantum matter.Comment: `2nd Vienna Symposium for the Foundations of Modern Physics' Festschrift MS for Foundations of Physic

    Direct versus Delayed pathways in Strong-Field Non-Sequential Double Ionization

    Get PDF
    We report full-dimensionality quantum and classical calculations for double ionization of laser-driven helium at 390 nm. Good qualitative agreement is observed. We show that the classical double ionization trajectories can be divided into two distinct pathways: direct and delayed. The direct pathway, with an almost simultaneous ejection of both electrons, emerges from small laser intensities. With increasing intensity its relative importance, compared to the delayed ionization pathway, increases until it becomes the predominant pathway for total electron escape energy below around 5.25 UpU_{p}. However the delayed pathway is the predominant one for double ionization above a certain cut-off energy at all laser intensities

    Improving continence services for older people from the service-providers' perspective: a qualitative interview study

    Get PDF
    This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 3.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial.Objective To examine in depth the views and experiences of continence service leads in England on key service and continence management characteristics in order to identify and to improve our understanding of barriers to a good-quality service and potential facilitators to develop and to improve services for older people with urinary incontinence (UI). Design Qualitative semistructured interviews using a purposive sample recruited across 16 continence services. Setting 3 acute and 13 primary care National Health Service Trusts in England. Participants 16 continence service leads in England actively treating and managing older people with UI. Results In terms of barriers to a good-quality service, participants highlighted a failure on the part of commissioners, managers and other health professionals in recognising the problem of UI and in acknowledging the importance of continence for older people and prevalent negative attitudes towards continence and older people. Patient assessment and continence promotion regardless of age, rather than pad provision, were identified as important steps for a good-quality service for older people with UI. More rapid and appropriate patient referral pathways, investment in service capacity, for example, more trained staff and strengthened interservice collaborations and a higher profile within medical and nurse training were specified as being important facilitators for delivering an equitable and high-quality continence service. There is a need, however, to consider the accounts given by our participants as perhaps serving the interests of their professional group within the context of interprofessional work. Conclusions Our data point to important barriers and facilitators of a good-quality service for older people with UI, from the perspective of continence service leads. Further research should address the views of other stakeholders, and explore options for the empirical evaluation of the effectiveness of identified service facilitators.Funding was received from the New Dynamics of Ageing Programme, led by the Economic & Social Research Council, UK (grantnumber RES-353-25-0010)

    Relation between Tunneling and Particle Production in Vacuum Decay

    Get PDF
    The field-theoretical description of quantum fluctuations on the background of a tunneling field σ\sigma is revisited in the case of a functional Schrodinger approach. We apply this method in the case when quantum fluctuations are coupled to the σ\sigma field through a mass-squared term, which is 'time-dependent' since we include the dynamics of σ\sigma . The resulting mode functions of the fluctuation field, which determine the quantum state after tunneling, display a previously unseen resonance effect when their mode number is comparable to the curvature scale of the bubble. A detailed analysis of the relation between the excitations of the field about the true vacuum (interpreted as particle creation) and the phase shift coming from tunneling is presented.Comment: 20 pages, 4 figures, submitted to PR
    corecore