research

Direct versus Delayed pathways in Strong-Field Non-Sequential Double Ionization

Abstract

We report full-dimensionality quantum and classical calculations for double ionization of laser-driven helium at 390 nm. Good qualitative agreement is observed. We show that the classical double ionization trajectories can be divided into two distinct pathways: direct and delayed. The direct pathway, with an almost simultaneous ejection of both electrons, emerges from small laser intensities. With increasing intensity its relative importance, compared to the delayed ionization pathway, increases until it becomes the predominant pathway for total electron escape energy below around 5.25 UpU_{p}. However the delayed pathway is the predominant one for double ionization above a certain cut-off energy at all laser intensities

    Similar works