3,423 research outputs found

    Dental Light-curing Units: An American Dental Association Clinical Evaluators Panel Survey

    Get PDF
    Background The ability to polymerize light-activated dental materials with dental light-curing units (DLCUs) has revolutionized dentistry. However, proper DLCU use is essential for ensuring the effectiveness and performance of these materials. Methods The authors developed an electronic cross-sectional survey in the American Dental Association Qualtrics Research Core platform. The survey included questions about DLCU use, unit type and selection, training, maintenance, technique, and safety measures. The authors deployed the survey to 809 American Dental Association Clinical Evaluators (ACE) panelists on October 9, 2019, and sent reminder links to nonrespondents 1 week later. They conducted exploratory and descriptive analyses using SAS software Version 9.4. Results Of the 353 ACE panelists who completed the survey, most used a DLCU in their practices (99%), and light-emitting diode multiwave units were the most common type of DLCU units (55%). Dentists use DLCUs for over one-half of their appointments each day (mean [standard deviation], 59% [22%]). Regarding technique, respondents reported that they modify their curing technique on the basis of material thickness (79%) and material type or light tip-to-target distances (59%). Maintenance practices varied, with two-thirds of respondents reporting that they periodically check their DLCUs\u27 light output. Conclusions DLCUs are an integral part of a general dentist’s daily practice, but maintenance, ocular safety, and technique varied widely among this sample. Practical Implications Because clinical effectiveness requires delivery of an adequate amount of light energy at the appropriate wavelength, variation in DLCU maintenance, safety, and techniques suggest that dentists could benefit from additional guidance and training on DLCU operation

    Role of TNF-α in vascular dysfunction

    Get PDF
    Healthy vascular function is primarily regulated by several factors including EDRF (endothelium-dependent relaxing factor), EDCF (endothelium-dependent contracting factor) and EDHF (endothelium-dependent hyperpolarizing factor). Vascular dysfunction or injury induced by aging, smoking, inflammation, trauma, hyperlipidaemia and hyperglycaemia are among a myriad of risk factors that may contribute to the pathogenesis of many cardiovascular diseases, such as hypertension, diabetes and atherosclerosis. However, the exact mechanisms underlying the impaired vascular activity remain unresolved and there is no current scientific consensus. Accumulating evidence suggests that the inflammatory cytokine TNF (tumour necrosis factor)-α plays a pivotal role in the disruption of macrovascular and microvascular circulation both in vivo and in vitro. AGEs (advanced glycation end-products)/RAGE (receptor for AGEs), LOX-1 [lectin-like oxidized low-density lipoprotein receptor-1) and NF-κB (nuclear factor κB) signalling play key roles in TNF-α expression through an increase in circulating and/or local vascular TNF-α production. The increase in TNF-α expression induces the production of ROS (reactive oxygen species), resulting in endothelial dysfunction in many pathophysiological conditions. Lipid metabolism, dietary supplements and physical activity affect TNF-α expression. The interaction between TNF-α and stem cells is also important in terms of vascular repair or regeneration. Careful scrutiny of these factors may help elucidate the mechanisms that induce vascular dysfunction. The focus of the present review is to summarize recent evidence showing the role of TNF-α in vascular dysfunction in cardiovascular disease. We believe these findings may prompt new directions for targeting inflammation in future therapies

    Regional land-use and local management create scale-dependent 'landscapes of fear' for a common woodland bird

    Get PDF
    Context Land-use change and habitat fragmentation are well known drivers of biodiversity declines. In forest birds, it has been proposed that landscape change can cause increased predation pressure that leads to population declines or community change. Predation can also have non-lethal effects on prey, such as creating ‘landscapes of fear’. However, few studies have simultaneously investigated the relative contribution of regional land-use and local management to creating ‘landscapes of fear’. Objectives To quantify the relative contribution of regional land-use and local management to the ‘landscape of fear’ in agricultural landscapes. Methods Bioacoustic recorders were used to quantify Eurasian Wren Troglodytes troglodytes alarm call rates in 32 naturally replicated broadleaf woodlands located in heterogeneous agricultural landscapes. Results Alarm call rates (the probability of an alarm per 10 min of audio) were positively correlated with the amount of agricultural land (arable or pasture) within 500 m of a woodland (effect size of 1) and were higher when livestock were present inside a woodland (effect size of 0.78). The amount of woodland and urban land cover in the landscape also had positive but weak effects on alarm call rates. Woodlands with gamebird management had fewer alarm calls (effect size of − 0.79). Conclusions We found that measures of both regional land-use and local management contributed to the ‘landscape of fear’ in agricultural landscapes. To reduce the impact of anthropogenic activities on ‘fear’ levels (an otherwise natural ecological process), land-managers should consider limiting livestock presence in woodlands and creating traditional ‘buffer strips’ (small areas of non-farmed land) at the interface between woodland edges and agricultural fields

    Bonding Crowns and Bridges with Resin Cement

    Get PDF
    Background Bonding crowns and bridges with resin cement can improve retention and reinforcement of the restoration. However, there is variation in the steps taken by different practitioners to achieve this goal. Methods The authors developed a survey on bonding dental crowns and bridges with resin cement and distributed it electronically to the American Dental Association Clinical Evaluators (ACE) Panel on May 22, 2020. The survey remained open for 2 weeks. Descriptive data analysis was conducted using SAS Version 9.4. Results A total of 326 panelists responded to the survey, and 86% of respondents who place crowns or bridges use resin cements for bonding. When placing a lithium disilicate restoration, an almost equal proportion of respondents etch it with hydrofluoric acid in their office or asked the laboratory to do it for them, and more than two-thirds use a silane primer before bonding. For zirconia restorations, 70% reported their restorations are sandblasted in the laboratory, and 39% use a primer containing 10-methacryloyloxydecyl dihydrogen phosphate. One-half of respondents clean their lithium disilicate or zirconia restorations with a cleaning solution. Resin cements used with a primer in the etch-and-rinse mode are the most widely used. The technique used to cure and clean excess resin cement varies among respondents. Conclusions The types of resin cements used, tooth preparation, crown or bridge preparation, and bonding technique vary among this sample. Practical Implications Although many dentists bond crowns and bridges on the basis of best practices, improvement in the process may be achieved by dentists communicating with their laboratory to confirm the steps performed there, ensuring an effective cleaning technique is used after try-in and verifying that the correct primer is used with their chosen restorative material

    High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Get PDF
    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nontubes (CNTs), graphites, or their combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mates of BNNTs are uses as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also uses as reinforcing inclusions combining with other polymer matrices to create composite layer like typical reinforcing fibers such as Kevlar (Registered Trademark), Spectra (Registered Trademark) ceramics and metals. Enhanced wear resistance and prolonged usage time, even under harsh conditions, are achieved by adding boron nitride nanomaterials because both hardness and toughness are increased. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800 C in air. Boron nitride based composite materials are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear for the human body as well as for vehicles, helmets, shields and safety suits/helmets for industry

    High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    Get PDF
    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry

    Classification of non-Riemannian doubled-yet-gauged spacetime

    Get PDF
    Assuming O(D,D)\mathbf{O}(D,D) covariant fields as the `fundamental' variables, Double Field Theory can accommodate novel geometries where a Riemannian metric cannot be defined, even locally. Here we present a complete classification of such non-Riemannian spacetimes in terms of two non-negative integers, (n,nˉ)(n,\bar{n}), 0n+nˉD0\leq n+\bar{n}\leq D. Upon these backgrounds, strings become chiral and anti-chiral over nn and nˉ\bar{n} directions respectively, while particles and strings are frozen over the n+nˉn+\bar{n} directions. In particular, we identify (0,0)(0,0) as Riemannian manifolds, (1,0)(1,0) as non-relativistic spacetime, (1,1)(1,1) as Gomis-Ooguri non-relativistic string, (D1,0)(D{-1},0) as ultra-relativistic Carroll geometry, and (D,0)(D,0) as Siegel's chiral string. Combined with a covariant Kaluza-Klein ansatz which we further spell, (0,1)(0,1) leads to Newton-Cartan gravity. Alternative to the conventional string compactifications on small manifolds, non-Riemannian spacetime such as D=10D=10, (3,3)(3,3) may open a new scheme of the dimensional reduction from ten to four.Comment: 1+41 pages; v2) Refs added; v3) Published version; v4) Sign error in (2.51) correcte
    corecore