47 research outputs found

    Reconfigurable Intelligent Surface Aided Cellular Networks With Device-to-Device Users

    Get PDF

    Optically reconfigurable unit cell for Ka-band reflectarray antennas

    Get PDF

    Wideband Spectrum Sensing on Real-Time Signals at Sub-Nyquist Sampling Rates in Single and Cooperative Multiple Nodes

    Get PDF
    The authors would like to acknowledge the Engineering and Physical Sciences Research Council (EPSRC) in the UK for their support of this work with Grant No. EP/L024241/1. Mark D. Plumbley was partly supported by a Leadership Fellowship (EP/G007144/1) from the UK EPSR

    Low-rank matrix completion based malicious user detection in cooperative spectrum sensing

    Get PDF
    In a cognitive radio (CR) system, cooperative spectrum sensing (CSS) is the key to improving sensing performance in deep fading channels. In CSS networks, signals received at the secondary users (SUs) are sent to a fusion center to make a final decision of the spectrum occupancy. In this process, the presence of malicious users sending false sensing samples can severely degrade the performance of the CSS network. In this paper, with the compressive sensing (CS) technique being implemented at each SU, we build a CSS network with double sparsity property. A new malicious user detection scheme is proposed by utilizing the adaptive outlier pursuit (AOP) based low-rank matrix completion in the CSS network. In the proposed scheme, the malicious users are removed in the process of signal recovery at the fusion center. The numerical analysis of the proposed scheme is carried out and compared with an existing malicious user detection algorithm

    Sparsity Independent Sub-Nyquist Rate Wideband Spectrum Sensing on Real-Time TV White Space

    Get PDF

    Efficient compressive spectrum sensing algorithm for M2M devices

    Get PDF
    Spectrum used for Machine-to-Machine (M2M) communications should be as cheap as possible or even free in order to connect billions of devices. Recently, both UK and US regulators have conducted trails and pilots to release the UHF TV spectrum for secondary licence-exempt applications. However, it is a very challenging task to implement wideband spectrum sensing in compact and low power M2M devices as high sampling rates are very expensive and difficult to achieve. In recent years, compressive sensing (CS) technique makes fast wideband spectrum sensing possible by taking samples at sub-Nyquist sampling rates. In this paper, we propose a two-step CS based spectrum sensing algorithm. In the first step, the CS is implemented in an SU and only part of the spectrum of interest is supposed to be sensed by an SU in each sensing period to reduce the complexity in the signal recovery process. In the second step, a denoising algorithm is proposed to improve the detection performance of spectrum sensing. The proposed two-step CS based spectrum sensing is compared with the traditional scheme and the theoretical curves

    Early respiratory viral infections in infants with cystic fibrosis

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Background Viral infections contribute to morbidity in cystic fibrosis (CF), but the impact of respiratory viruses on the development of airway disease is poorly understood. Methods Infants with CF identified by newborn screening were enrolled prior to 4 months of age to participate in a prospective observational study at 4 centers. Clinical data were collected at clinic visits and weekly phone calls. Multiplex PCR assays were performed on nasopharyngeal swabs to detect respiratory viruses during routine visits and when symptomatic. Participants underwent bronchoscopy with bronchoalveolar lavage (BAL) and a subset underwent pulmonary function testing. We present findings through 8.5 months of life. Results Seventy infants were enrolled, mean age 3.1 ± 0.8 months. Rhinovirus was the most prevalent virus (66%), followed by parainfluenza (19%), and coronavirus (16%). Participants had a median of 1.5 viral positive swabs (range 0–10). Past viral infection was associated with elevated neutrophil concentrations and bacterial isolates in BAL fluid, including recovery of classic CF bacterial pathogens. When antibiotics were prescribed for respiratory-related indications, viruses were identified in 52% of those instances. Conclusions Early viral infections were associated with greater neutrophilic inflammation and bacterial pathogens. Early viral infections appear to contribute to initiation of lower airway inflammation in infants with CF. Antibiotics were commonly prescribed in the setting of a viral infection. Future investigations examining longitudinal relationships between viral infections, airway microbiome, and antibiotic use will allow us to elucidate the interplay between these factors in young children with CF
    corecore