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Reconfigurable Intelligent Surface Aided Cellular
Networks with Device-to-Device Users
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Abstract—Reconfigurable intelligent surface (RIS) technology
is promising to enhance wireless communications services by
providing smart radio environment. In this paper, we investigate
the RIS aided cellular networks with device-to-device (D2D)
users, and maximize the sum of the transmission rate of the
D2D communications and the cellular networks from a new
perspective. In addition to solving the typical resource allocation
problems for D2D communications, this paper further optimize
the wireless environment by adjusting the position and phase
shift of the RIS. To solve this non-convex problem, we propose a
novel decentralized double deep Q-network (D3QN) framework
for the resource allocation at users and a centralized DDQN for
RIS optimization at the base station (BS), which are verified
to achieve the near-optimal performance with lower complexity
and enhanced robustness. Simulation results illustrate that the
proposed framework can achieve higher transmission rates
compared to benchmarks, meanwhile meeting the quality of
service (QoS) requirements at the BS and D2D users.

Index Terms—Deep reinforcement learning, device-to-device
communication, reconfigurable intelligent surface.

I. INTRODUCTION

As one of the key technologies of the fifth-generation (5G)
and the beyond communication systems, device-to-device
(D2D) communications permit devices to communicate with
proximity devices over the licensed spectrum allocated for
cellular networks. By doing so, it will enhance the commu-
nication system performance by reducing the latency as well
as improve spectrum efficiency (SE), and energy efficiency
(EE) [2]. D2D communications have been adopted in various
applications, standards, and regulations, including the 3rd
Generation Partnership Project (3GPP) proximity services [3],
Internet of Things (IoT), vehicle-to-everything (V2X) com-
munications, and wearable communications [4]. According to
Cisco, the share of D2D links will increase 20 percent from
2018 to 2023 [5].

There is a rich body of literature on resource allocation
for D2D communications [6]–[8]. Recently, a novel approach
referred to as the smart radio environment presents a new per-
spective to enhance the D2D communications. Particularly, the
wireless environment can be controllable and programmable.
In this way, we can optimize the communication environment
and resource allocation for D2D devices simultaneously, thus
permitting us to control or even eliminate the interference.

One key technique to realize the smart radio environment
is reconfigurable intelligent surface (RIS) [9], [10], which
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has attracted extensive attention in wireless communications.
Equipped with an array of low-cost passive reflecting el-
ements, the phase shift and reflection amplitude of each
RIS element can be adjusted by a controller, enabling it
to modify wireless communication environment proactively.
Compared with the conventional relays, the advantages of
RIS include lowered energy consumption, real-time phase
shift adjustment and enhanced system capacity [11]. Although
the control signal can be analog using varactors to achieve
continuous phase shift [12], the long response time and low
phase accuracy of varactors make it impractical for wireless
communications. Theoretical analyses for multi-bit controlled
elements have been provided to strike a tradeoff between
the system performance and the complexity [13], [14]. The
performance improvement has been further verified by an RIS-
based wireless communication prototype [15], which shows
the great potential of RIS aided wireless networks.

On the other hand, the large number of RIS elements
requires optimization methods with lower complexity. Al-
though typical optimization tools may obtain the optimal
solution, their high computational cost makes them unre-
alistic for the real-time optimization. Fortunately, machine
learning (ML) methods, especially deep learning (DL) ap-
proaches, have become promising tools to address nonlinear
non-convex problems and high-computation issues, which
are mathematically intractable. Particularly, deep Q-network
(DQN) leverages neural network (NN) to deal with complex
input state, and has shown its power in solving sophisticated
decision-making problems under uncertain and dynamic en-
vironments, e.g., human-level game playing [16], [17] and
AlphaGo [18]. Inspired by the remarkable performance of
DQN in various areas, there have been some works exploring
its application in wireless communications [19]–[23]. DQN
provides a principled and robust method to tackle the dynamic
environment by making decisions for discrete optimization
problems, which bring it the ability to optimize the resource
allocation for D2D communications in varying channel state
environment (CSI) [21]. Moreover, as a new technique of
DQN, the double DQN (DDQN) provides a more reasonable
way to evaluate and execute the action, which avoids the
overestimation challenge of legacy DQN algorithms and is
more robust to time-varying environment.

A. Related work
1) Resource allocation in D2D: The existing works on

D2D communications mainly focus on transmit power and
channel assignment optimization [6]–[8]. Mili et. al [7] maxi-
mize EE by optimizing the transmit power while satisfying the
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QoS requirement for D2D and cellular users. To overcome the
challenges brought by dynamic D2D channels, Liang et. al [8]
have proposed an algorithm for robust spectrum allocation
and power optimization. While there exists plenty of literature
applying optimization tools to solve resource allocation prob-
lems for D2D communications, most of them are centralized
and requires intensive computation at the BS to execute the
optimization process [24].

One solution to realize the distributed resource allocation is
game theory. To overcome the convergence challenge caused
by fast varying channels, Dominic et al. [25] adopted the
stochastic learning algorithm among users. However, the game
theory based algorithms neglect the collaboration behaviour
among users, i.e., each user only focus on their own benefits,
which may be adverse to the overall system performance.

As discussed earlier, DL based approaches enable wireless
communication users treat the dynamic environment and make
their robust decisions with lower computational complexity.
DL has been applied to resource allocation [24] and physical
layer processing [26]. Moreover, relying on the local users in-
formation and observations, multi-agent reinforcement learn-
ing (MARL) based decentralized optimization approaches
have been widely applied in wireless communications [20]–
[23]. Leveraging MARL, D2D pairs can make their own
decisions on transmit power and spectrum sharing policy,
which also offloads the computational complexity from the
BS to users. Liu et. al [20] deploy D2D users as MARL
agents, which learn to access the channel of cellular users by
collectively interacting with the communication environment
and receiving the rewards. Each D2D pair chooses its transmit
power level and sub-channel to minimizing long-term system
cost. However, the unknown policy and information of other
users cause a non-stationary environment. To overcome it,
MARL algorithms with improved state observation have been
proposed in [21], [22], [27]. Such decentralized optimization
approach has been verified to achieve the near-optimal per-
formance [23]. Although the above valuable works improve
the performance of D2D communications significantly, they
mainly focus on the transmit power allocation and channel
assignment allocation under static communication environ-
ments. With the aid of RIS, we are able to actively control
the communication environment and optimize the resource
allocation from a brand new perspective.

2) RIS enhanced wireless communications: Recently, RIS
has been explored in a wide range of scenarios, e.g., RIS-
enhanced cellular networks beyond 5G, RIS-assisted indoor
communications, and IoT applications [28]. Most work only
consider the phase shift design by assuming that the RIS is
deployed at a fixed location. However, the location of the
RIS will affect the performance significantly [29], [30]. By
considering the costs and available space to install RIS, its
deployment location should be optimized. Particularly, RIS
has been successfully applied in D2D networks in [31]–[33].
Many approaches have been developed to optimize RIS for
achieving higher throughput or EE. To solve the non-convex
maximizing problems, Cao et. al [31] and Fu et. al [32]
tend to find sub-optimal solutions by using the block coor-
dinate descent and Riemannian pursuit method, respectively.

To achieve a performance-complexity tradeoff, Pradhan et.
al [33] adopt the projected sub-gradient method for the phase
shift. However, to enhance the overall system performance,
the optimization of RIS becomes a critical challenge due
to the huge number of reflecting elements to optimize [34].
The time-varying D2D channel also brings high transmission
overhead to optimization algorithms.

A well-trained ML model is an effective approach to lower
computational cost. Although the ML model requires more
computations at the training stage, it could be trained offline
and is robust to fast channel variations in dynamic environ-
ment. Particularly, Gao et. al [29] investigate the application of
reinforcement learning (RL) for aerial RIS trajectory optimiza-
tion. Moreover, as a novel branch of ML, DL enable the users
cope the complicated environment and has been applied for
channel estimation and phase shift optimization in RIS-aided
communications [35]. Motivated by the applications of DL in
solving sophisticated optimization problems, Taha et. al [36]
have applied the DL method for estimating the channels
and configuring of RIS. DQN has shown its potential for
optimization the phase shift and location of RIS. Liu et. al [37]
apply a DQN based algorithm to optimize the phase shift of
RIS for RIS-aided unmanned aerial vehicle communications.

B. Motivation and Contribution
We consider an RIS enhanced D2D communications system

to actively optimize the performance of communication. The
challenges occur in several aspects. The fast channel variations
of D2D communications make the conventional resource
allocation approaches based on perfect CSI not applicable any-
more [8]. Most of the current works for the RIS enhanced D2D
communication separate the RIS optimization and resource
allocation into sub-problems, then leveraging alternating op-
timization to solve the problem [31]–[33], [38]. However, the
fast channel variations may affect the performance of the alter-
nating optimization based approaches since the environment is
varying and the algorithms are hard to converge. Additionally,
the centralized alternating optimization algorithms pose high
computational pressure on the center, which is adverse to the
development of the massive capacity and connectivity trend
for 5G and the beyond. The same situation applies to the
centralized machine learning algorithms, where users need
to upload all of the local CSI and other related information
to the centralized computational center in real-time, bringing
huge transmission overhead and computational pressure to the
center.

To overcome these challenges, we jointly optimize the
transmit power and the channel assignment for D2D pairs in
a distributedly way. Additionally, a centralized DDQN model
is adopted to optimized the RIS position, and the phase shift
of RIS at the BS. The major contributions of this paper are
summarized as follows:
1) To improve the sum rate of the cellular networks with

D2D communications, we formulate the problem as joint
optimization for the resource allocation of D2D pairs, the
RIS position, and phase shift of RIS.

2) To enhance the robustness and effectiveness of the pro-
posed algorithm, a novel DDQN algorithm is applied
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where action choosing and target Q-value generation are
decoupled, thus overcoming the overestimation problem in
the conventional DQN.

3) To separate the RIS optimization task and the resource
allocation task, a decentralized framework is designed.
The RIS is optimized by a centralized DDQN at the BS.
Meanwhile, D2D pairs are allowed to make their own
policies locally based on a decentralized DDQN (D3QN)
approach, thereby offloading the computational cost at the
BS and lowering the uplink transmission overhead.

The rest of this paper is organized as follows. The sys-
tem model of RIS enhanced D2D communication system is
presented in Section II. The proposed decentralized resource
allocation is introduced in Section III. The centralized RIS
optimization is presented in Section IV. Simulation results
are presented in Section V. Finally, conclusions are drawn
in Section VI.

II. SYSTEM MODEL

In this section, the system model for RIS enhanced cellular
network with underlay D2D communications is described and
an uplink rate maximization problem is formulated.

A. System settings

As shown in Fig. 1, we consider the uplink transmission
in a cellular network, which includes K cellular users com-
municate with the BS in the cellular mode, and I D2D pairs
communicating with each other by reusing the resource blocks
(RB) with cellular users. Assuming that the i-th D2D transmit-
ter, Dt

i , communicating with the corresponding receiver, Dr
i ,

by reusing the RB assigned to the k-th cellular user, Uk, then
Dt
i becomes the source of interference for Uk. To enhance the

transmission performance of the network, an RIS equipped
with a uniform linear array (ULA) composed of N passive
elements is deployed.

Assuming that the horizontal coordinates of Dt
i , D

r
i , Uk,

RIS and the BS are denoted as PDt
i = (XDt

i , Y Dti ) ∈ R2,
PDr
i = (XDr

i , Y Dri ) ∈ R2, PU
k = (XU

k , Y
U
k ) ∈ R2, PRIS =

(XRIS , Y RIS) ∈ R2 and PBS = (XBS , Y BS) ∈ R2,
respectively. The 3D distance between Dt

i and Dr
i , can be

calculated by

dDi =

√
(ZDti − Z

Dr
i )2 + ||PDt

i − P
Dr
i ||2 (1)

where ZDti and ZDri represent the antenna height of the i-
th D2D transmitter and the receiver. The distance between
cellular users, D2D users, the RIS and the BS can be denoted
in the similar way. The small-scale fading for the direct links,
i.e., the links without the aid of the RIS, are modeled by
the Rayleigh fading. The channel coefficient gDi [k] between
the D2D pair (Dt

i and Dr
i ) over the k sub-channel, which is

preoccupied by the k-th cellular user Uk can be denoted as

gDi [k] = L(dDi )mD
i [k], (2)

where mD
i [k] represents Rayleigh fading between i-th D2D

pair on k-th sub-channel, which is assumed to be complex
Gaussian distributed with zero mean and unit variance, i.e.,
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Fig. 1. System model for RIS enhanced cellular network with underlay
D2D communications. Note that the RIS influences the signal link and the
interference link at the same time.

mD
i [k] ∼ CN (0, 1),∀i ∈ I, ∀k ∈ K. Meanwhile, the large-

scale pathloss coefficient is modeled according to the pathloss
model in [39]. Similarly as (2), the channel coefficients for the
direct link between Uk and Dr

i , the link between Uk and the
BS, the link between Dt

i and the BS over k-th sub-channel
are denoted by gk,i[k], gUk [k], and gBSi [k].

The channel coefficient over the k-th sub-channel for the
overall i-th D2D link, hDi [k], is given by

hDi [k] = (hDri [k])HΘhDti [k]︸ ︷︷ ︸
Reflection link

+gDi [k]. (3)

Therein, the channel for RIS departure link and arrival link
can be denoted by

(hDri [k])H = L(dDri )e−j2π
d
Dr
i
λ[k] aH

AoD[k],

and

hDti [k] = L(dDti )e−j2π
d
Dt
i
λ[k] aAoA[k],

respectively, where dDti and dDri denote the distance between
RIS and Dt

i , between RIS and Dr
i , respectively. The arrival

and departure array responses of the RIS are denoted as

aAoD[k] =
[
1, . . . , e−j2π

ds
λ[k]

(N−1) sin(θAoD)
]T
,

and

aAoA[k] =
[
1, . . . , e−j2π

ds
λ[k]

(N−1) sin(θAoA)
]T
,

respectively. The departure angel and the arrival angle of the
RIS is denoted by θAoD and θAoA, respectively. The symbol
(·)T and (·)H represent transpose and conjugate transpose
operation, diag[·] represents the diagonal matrix.

The phase shift and amplitude attenuation A for
all the RIS elements can be expressed as Θ ,
diag

[
Aejθ1 , Aejθ2 , . . . , AejθN

]
, where A ∈ [0, 1] and θ ∈

[0, 2π) Similarly, the overall channel coefficient between Uk
and Dr

i , the channel coefficient between l-th D2D transmitter
Dt
l and Dr

i , the coefficient between Uk and the BS, the
coefficient between Dt

i and the BS can be represented as
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hk,i[k], hDl,i[k], hUk [k] and hBSi [k], respectively. The signal
yi[k] received by Dr

i over the k-th sub-channel is denoted as

yi[k] = hDi [k] · xDi︸ ︷︷ ︸
Desired signal

+ hk,i[k] · xUk︸ ︷︷ ︸
Interference signal

+ z︸︷︷︸
Noise

, (4)

where xDi ,
√
pDi u

D
i and xUk ,

√
pUk u

U
k denote the signal

from Dt
i and Uk, pDi and pUk denote the transmit power of

the Dt
i and Uk, and uDi and uUk represent the unit variance

entries with zero mean, and z ∼ N (0, σ2) denotes the AWGN
noise signal with mean 0 variance σ2. Then, the signal-to-
interference-plus-noise ratio (SINR) at Dr

i and the BS for Uk
over the k-th sub-channel can be denoted as

γDi [k] =
pDi
∣∣hDi [k]

∣∣2
Ii[k] + σ2

, (5)

and

γUk [k] =
pUk
∣∣hUk [k]

∣∣2∑I
i=1 ρk,ip

D
i

∣∣hBSi [k]
∣∣2 + σ2

, (6)

respectively, where ρk,i is the resource reuse coefficient of Uk
and i-th D2D pair, and ρk,i = 1 when i-th D2D pair reuses
the channel assigned to Uk. Otherwise, ρk,i = 0. Moreover,
the interference to Dr

i is given by

Ii[k] = ρk,ip
U
k |hk,i[k]|2 +

I∑
l=1,l 6=i

ρk,lp
D
l

∣∣hDl,i[k]
∣∣2 , (7)

Then, the ergodic capacity for i-th D2D pair and for the k-th
cellular user Uk can be denoted by

CDi [k] = E
[
B[k] log2(1 + γDi [k])

]
, (8)

and

CUk [k] = E
[
B[k] log2(1 + γUk [k])

]
, (9)

respectively, where E[·] represents the statistical expectation of
[·], representing the expectation of the rate over the small scale
fading distribution, Bk is the bandwidth of k-th sub-channel.
The channel capacity of underlay D2D networks could be
expressed by

Csum =

K∑
k=1

(
I∑
i=1

ρk,iC
D
i [k] + CUk [k]

)
. (10)

B. Problem formulation

We aims to maximize the sum rate in (9) by jointly
optimize the phase shift, the position of RIS, the resource
reuse coefficient ρ = [ρ1,1, . . . , ρ1,I , . . . , ρK,1, . . . , ρK,I ], and
the transmit power pD = [pD1 , . . . , p

D
I ] of D2D transmitters.

The joint data rate maximization problem can be formulated
as

P1: maximize
{PRIS ,Θ,ρ,pD}

Csum (11a)

subject to pDi ≤ pDmax,∀i ∈ I, (11b)

γDi ≥ γDmin,∀i ∈ I, (11c)

γUk ≥ γUmin,∀k ∈ K, (11d)
ρk,i ∈ {0, 1},∀i ∈ I, ∀k ∈ K,

(11e)
K∑
k=1

ρk,i ≤ 1,∀i ∈ I, (11f)

0 ≤ θn < 2π,∀n ∈ N, (11g)

PRIS ∈ P , (11h)

where γDmin and γUmin are the SINR thresholds at the D2D
receiver and the BS, respectively. Meanwhile, we restrict
the location of the RIS in some discrete grids P =
{P 1,P 2, . . . ,P o, . . . ,PO}, where O represents the number
of grids that RIS can be installed on. This is because that
RIS cannot be installed everywhere so that the 2D continuous
variables for the location of RIS is impractical. The grids
P are distributed uniformly to simulate the distribution of
RIS in reality. Constraint (11e) and (11f) assumes that each
D2D pair only occupies one RB. Due to hardware limitations,
RIS elements can only provide discrete phase shifts. This
constraint (11e) and (11f) make (P1) non-convex. To solve
the non-convex problem, we have to utilize exhaustive search,
which is impractical when the number of D2D pairs, cellular
users, and the number of RIS elements become large. Gener-
ally, classical optimization tools can be leveraged to acquire
suboptimal solutions [31]–[33]. Alternatively, we leverage the
D3QN framework for resource allocation and the centralized
DDQN framework for RIS optimization, which are more
applicable to solve problems with high dimension inputs as
well as large state and action space.

III. RESOURCE ALLOCATION OPTIMIZATION BY PROPOSED
D3QN FRAMEWORK

The optimization objective of (P1) is to jointly optimize the
resource allocation for D2D pairs, plus the location and phase
shift for the RIS. Rather than optimizing the configuration
of RIS and the resource sharing centrally at the BS, we
propose D3QN framework to executed the resource allocation
decentrally at each D2D pair. Meanwhile, the RIS is optimized
by the centralized DDQN at the BS. By decoupling the
joint optimization into sub-problems, we not only lower the
computational pressure on the BS significantly, but also enable
D2D pairs determine the resource sharing policy by their local
information to reduce the transmission overhead.

In this section, we introduce the basic concept of RL and
the proposed D3QN framework for resource allocation of D2D
pairs. The joint optimization for the location and phase shift
of RIS is subsequently presented in Section IV.
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A. System description

Generally, the resource allocation optimization problem can
be modeled as a linear sum assignment programming (LSAP)
problem and can be solved by Hungarian algorithm [40] with
computational complexity O(K3). The complexity is much
higher if we take the transmit power of D2D transmitters
into account. The high complexity of the Hungarian algorithm
makes real-time optimization is impractical in the proposed
D2D communications scenario. Additionally, the algorithm is
required to be robust for fast channel variations and unstable
CSI for different RIS implementations. Leveraging D3QN,
we can model the channel assignment and transmit power
as a MARL problem and train the agents under different
CSI conditions so that it can be adaptive to the various
communications system. Noted that the D3QN models at the
D2D pairs should be trained offline. Actually, updating the
resource allocation policy too quickly can cause challenges
on convergence performance when we train the centralized
DDQN for RIS optimization. This is because even if the RIS
controller takes the exactly same action, the rewards would be
various for different resource allocation policies, making the
algorithm hard to converge. The unstable reward requires a
robust resource allocation algorithm so that it can work under
different RIS implementations.

Given the arbitrary location and phase shift of the RIS,
the resource allocation optimization problem can be simplified
into

P2: maximize
{ρ,pD}

Csum (12a)

subject to pDi ≤ pDmax,∀i ∈ I, (12b)

γDi ≥ γDmin,∀i ∈ I, (12c)

γUk ≥ γUmin,∀k ∈ K, (12d)
ρk,i ∈ {0, 1},∀i ∈ I, ∀k ∈ K, (12e)
K∑
k=1

ρk,i ≤ 1,∀i ∈ I. (12f)

B. Concept of reinforcement learning and DQN

RL is a branch of ML paradigm that allows agents to learn
the optimal policy by the trial-and-error interaction with the
environment to maximize the desired reward. Mathematically,
the RL can be modeled as an markov decision process (MDP),
including environment state S, actions A, and the reward R
which can be determined for each state-action pair. During
each training step t, each agent observes the state st ∈ S
and then take an action at ∈ A according to a certain policy
π. Then the agent receives the corresponding reward rt and
turn to the next state st+1, which is determined by current
state st and action at but independent of the past states.
Formally, this process can be denoted by a transition tuple
et = (st, at, rt, st+1). The interaction process is shown in
Fig. 2.

During each training step t, the objective of RL is to
maximize the cumulative desired return from time t to the

Loss FunctionLoss Function

EnvironmentEnvironment
Evaluate 
Network
Evaluate 
Network

Target NetworkTarget Network

Experience 
Replay 
Dataset

Experience 
Replay 
Dataset

gradient 
descent
gradient 
descent

Update 
parameter

Wireless 
communication

Wireless 
communication

evaluateq

1js +

targetq

ts 1ts +

1( , , , )t t t ts a r s
+

( , )j js a jr

arg max ( , ; )a tq s a W

Fig. 2. The interaction of the DDQN at each agent with the environment.
The parameters of the evaluate network will be updated to the target network
periodically.

future, which can be expressed by

Rt =

∞∑
τ=0

γτrt+τ , (13)

where γ ∈ (0, 1) represents the discount factor which repre-
sents the impact of the future reward. The expectation reward
for a state-action pair (s, a), the action-value function, is
defined as

qπ(s, a) = Eπ[Rt|st = s, at = a], (14)

where policy π is defined as a mapping from state S to the
probability of choosing each action in A.

The objective of RL is to find a optimal policy π∗ =
arg maxπ q

π(s, a). The optimal action-value function obeys
an important identity known as the Bellman equation. The
optimal policy is to select the action that maximizes the
expected Q-value [16]:

q∗(st, at) = E[rt + γ max
a′∈A

q∗(st+1, a
′)|st, at]. (15)

Authors in [41] have shown that, q(st, at) → q∗(st, at) as
t → ∞. However, it is impractical since the training step
is discrete. Instead, the NNs W are applied to be func-
tion approximator to estimate the action-value function, i.e.,
q(st, at;W ) ≈ q∗(st, at), which is the basic idea of the DQN.
When the state and action space become large, this method
does not need to maintain the large Q-table as conventional
RL approaches do, thereby expanding the applications of RL
in wireless communications greatly.

The training data set, also named replay memory D =
[e1, . . . , et, . . . ] for NN is stored according to agent’s expe-
rience at each training step t, where the experience et =
(st, at, rt, st+1) is called transition, including the current
state, action, reward and next state information. The training
minibatch (sj , aj , rj , sj+1) is sampled from the training data
set. During the training process, parameters are updated to the
Q estimation network at each step to generate the estimated
Q-value. Q target network is updated after every υ steps
according to the parameters in the Q estimation network.
The training process is to minimize the error function which
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represents the estimated Q-value and the realistic Q-value,
which can be given by:

Loss(W ) = E[(qtarget − q(sj , aj ;W ))2], (16)

where qtarget = rj+γmaxa′ q(sj+1, a
′;W−) is the target Q-

value for minibatch j, which is the output of Q target network
in conventional DQN algorithm, W and W− denotes the
weights of the evaluation network and the target network, re-
spectively. The weights are optimized by the gradient descent
method [16].

C. Double deep Q-network algorithm

The DQN algorithm can achieve a near-optimal perfor-
mance in some scenarios, while sometimes it causes the
overestimate problem. The target Q-value is approximately
generated by the target network by maximizing the action-
value function, while this target value is even higher than
the true optimal action-value. The overestimate problem is
severest when the number of actions becomes large, affecting
the convergence and performance of the learned strategies.
The idea of DDQN is decomposing action selection and action
evaluation [19] to reduce overestimations. Unlike DQN that
uses the evaluate network to estimate the action-value function
and select action at the same time, DDQN uses the target
network when evaluating the action-value function. In other
words, the DDQN uses the evaluate network to select the
action, while using the target network to fairly evaluate this
action. The updated target Q-value function in DDQN is
defined as

qtarget = rj+γq(sj+1, arg max
a′∈A

q(sj+1, a
′;W );W−). (17)

Note that DDQN is a model-free algorithm, which guaran-
tees its robustness for different scenarios. Meanwhile, it is an
off-policy algorithm which learns from the greedy policy and
choose the action according to ε-greedy algorithm to make
a tradeoff between exploitation and exploration. The agent
will choose actions uniformly from A with a probability of
ε, while choosing the action a = maxa q(s, a;W ) which
maximizes the Q-value with a probability of (1-ε). In this
paper, we leverage an improved algorithm called decaying ε-
greedy algorithm as shown in [42], so that we can achieve a
better explored performance at the beginning and converged
performance in the end.

D. Observation state for D3QN

In this subsection, the proposed D3QN framework is in-
troduced in details. As a decentralized framework, each D2D
pair is modeled as an agent, concurrently making there own
decision based on the local observation. An agent cannot
directly acquire the global environment state st which contains
the global channel information and agents behaviour, thus the
state design in [43] based on global SINR information is not
applicable. Given the current environment state sRAt , the i-
th D2D pair Di generates the unique observation o(sRAt , i)

from sRAt at each training step t. Then it takes an action a(i)t ,
forming the joint action at with all the other agents. Then Di

will receive an reward rRAt and the environment turn to the
next state sRAt+1. Observations o(sRAt+1, i) in the next training
step will then be generated by Di.

Rather than the location information based state definition,
the CSI based state definition enhances the robustness of the
model. In other words, for Di, the observation space includes:

1) Local channel information hDi [k];
2) The interference channel from other D2D transmitters

hDl,i[k],∀l 6= i, l ∈ I;
3) The interference channel to the BS hBSi [k];
4) The interference from cellular users hk,i[k],∀k ∈ K;
5) The interference power Ii[k].

The information of channel hDi [k], hDl,i[k] and hk,i[k] can
be estimated by D2D receiver accurately, while hBSi [k] can
be estimated and broadcast by the BS. Additionally, interfer-
ence power Ii[k] can be measured by D2D receiver. Hence,
the observation space of Di at time t can be denoted by
o(sRAt , i) = {{Hi[k]}∀k∈K , {Ii[k]}∀k∈K}, where Hi[k] =
{hDi [k], {hDl,i[k]}∀l∈I,l 6=i, hBSi [k], hk,i[k]}.

Particularly, the multi-agent learning process can be de-
scribed as Markov game. The state transition depends on
actions taken by all of the agents, i.e., the joint action
contributes to the state shift. Apart from the action taken by
an agent itself, the actions of other agents can impact the
reward of the agent, forming an unstable environment. The
nonstationary environment from the view of each agent leads
to nonstationary Q-function, making RL hard to converge.
The nonstationarity challenge is tackled in [44] with a unique
state, which includes view-based positional distribution and
shared position information by each vehicle. However, the
nonstationarity challenge is severer when combining with deep
learning. The proposed D3QN models use experience replay
to feed the NN, while the environment that generated the data
in the agent’s replay memory is different from the current
environment, and the convergence performance of the learning
process is affected. To enable replay memory in MARL,
authors in [27] designed a low dimensional fingerprint which
includes the information of policy changes of other agents.
The policy change is highly correlated with epoch e and the
exploration rate ε. In other words, the observation space for
i-th agent can be expressed as

z
(i)
t = {o(sRAt , i), e, ε}. (18)

Such fingerprint allows an agent to expect the policy change
of other agents, thus improving the stationarity of the envi-
ronment.

E. Actions and rewards definition for D3QN

As aforementioned, cellular users communicate with the BS
on disjoint channels. Each D2D pair can choose one of K sub-
channel which is preoccupied with a cellular user. The range
of D2D transmit power including Ap multiple discrete levels
is [0, pDmax]. As the result, the dimension of the action space
is equal to Ap × K. The actions of all agents form a joint
action at which represents the resource reuse scheme.
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Reward represents the objective of the optimization. All
agents receive the same reward rRAt according to the joint
action at such that encouraging cooperative behaviors. To
guarantee the QoS and the SINR requirement of D2D com-
munications and cellular networks, the reward rRAt is directly
proportional to the sum rate for the successful transmission,
i.e., (12c), (12d) and (12f) are satisfied. Note that a constant
of proportionality is set as ξRA to guarantee the training
performance.

rRA =

{
ξRACsum, if (12c), (12d) and (12f) are satisfied;

0, otherwise.
(19)

F. Training algorithm for D3QN

As introduced above, each D3QN model at the D2D pair
takes its observation state as the input. Several fully connected
layers are leveraged as the hidden layer. During the training
and testing phases, the RIS is randomly implemented and
updated at the beginning of each epoch. One training epoch
contains several training steps during which the D2D pairs
interact with the wireless communication environment and
store the experience in the training data sets, i.e., replay
memories. The details of the training algorithm for the D3QN
models at the D2D pairs is shown in Algorithm 1.

IV. JOINT OPTIMIZATION FOR THE LOCATION AND PHASE
SHIFT OF RIS

As shown in Fig. 3, after resource allocation decisions are
made by D2D pairs, the resource sharing policy will be sent
to the BS as a part of the input information of the centralized
DDQN to optimize the RIS. Based on the resource sharing
information, the capacity optimization problem at the BS can
be formulated as

P3: maximize
{Θ,PRIS}

Csum (20a)

subject to γDi ≥ γDmin,∀i ∈ I, (20b)

γUk ≥ γUmin,∀k ∈ K, (20c)
0 ≤ θn < 2π,∀n ∈ N, (20d)

PRIS ∈ P , (20e)

Based on the resource allocation information, a centralized
DDQN model is proposed at the BS to solve the joint RIS
location and phase shift optimization problem. Particularly,
the DDQN components are introduced first, then the training
algorithm and performance analysis are presented in the
following.

A. Reinforcement learning components definition for central-
ized DDQN

For the centralized DDQN, the input state contains the
channel assignment coefficient ρ, the transmit power of each
D2D transmitters, the RIS phase shift Θ, as well as the
location information PRIS of RIS, which is denoted as
S = [ρ,pD,PRIS ,Θ].

Algorithm 1 D3QN training algorithm for the resource allo-
cation.

1: Input: The observation space z(i),∀i ∈ I;
2: Initialize the D3QN models W (i),∀i ∈ I , for each D2D

pair;
3: for each epoch do
4: Initialize the implementation of RIS randomly;
5: Update the large-scale fading channel;
6: for each training step t do
7: for each D2D pair i do
8: Observe z(i)t ;
9: Choose action a

(i)
t according to the observation

z
(i)
t and ε-greedy algorithm;

10: end for
11: Form the joint action at and receive reward rRAt ;
12: Update the small-scale fading channel;
13: for each D2D pairs i do
14: Observe z(i)t+1;
15: Store transition eRAt = (z

(i)
t , a

(i)
t , rRAt , z

(i)
t+1) in

DRAi ;
16: end for
17: end for
18: for each D2D pair i do
19: Replay memory:
20: Sample random minibatch of transitions

eRAj = (z
(i)
j , a

(i)
t , rRAj , z

(i)
j+1) in DRAi ;

21: Calculate qRAtarget by (17)
22: Perform a gradient descent step on

(qRAtarget − qRA(z
(i)
j , a

(i)
t ;W (i)))2;

23: end for
24: end for

Fig. 3. Architecture of the proposed D3QN framework and centralized
DDQN. The framework contains I decentralized DDQN models for the
resource allocation optimization and one centralized DDQN models for RIS
optimization.

Action set A represents the possible action choice for the
RIS controller. Generally, the location of RIS need to be
optimized before installation, while the phase shift can be
adjusted, so the action space contains the phase shift and
location of RIS. At training step t, action at consists of two
parts: i) the variable quantity of phase shift matrix, ∆Θ =
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{∆θ1, . . . ,∆θN}, where ∆θn ∈ {−δ, 0,+δ},∀n ∈ N ; ii)
the location choice of RIS, PRIS ∈ P . Formally, the action
at = [∆Θ;PRIS ], which has a cardinality |a| of (N + 2).
Action set A includes all possible actions with the cardinality
|A| = 3N ×O.

The reward represents whether we encourage or punish an
action, so it is defined based on the objective function given
in (5). The reward for RIS optimization rRIS can be defined
as a similar way as rRA in (19). For a successful transmission
at training step t, i.e., the constraints (20b) and (20c) are
satisfied, the reward can be defined as directly proportional
to the sum rate at this training step, otherwise a punishment
reward 0 will be received by the BS.

B. Proposed centralized DDQN algorithm for the control of
RIS

Leveraging the NN, the centralized DDQN model can find
the relationship between the input state and the corresponding
deployment of RIS. The components in centralized DDQN is
defined as
• Agent: The agent for the centralized DDQN model is

the BS. The BS processes the inputs and executes the
outputs of DDQN to control RIS.

• Input: At each training step t, the centralized DDQN
model takes the states St as the input, which includes
the resource allocation, current RIS position, and current
phase shift information.

• Output: The output of the centralized DDQN model is
the evaluated Q-value for state-action pairs. The output
layer contains |A| units, which represents the number
of possible actions. As shown in Fig. 2, two identical
networks are set: evaluation network and target network.
In the evaluation network, the current state Sj is the input
information, and the output is the evaluate Q-value for
each action. In the target network, the next expected state
Sj+1 is the input, while the output is the Q-value for each
action in the next state.

By receiving the input information, the RIS controller can
train the weights and update NNs to estimate the action-value
function. The proposed centralized DDQN algorithm for RIS
optimization is shown in Algorithm 2.

C. Performance analysis for D3QN and centralized DDQN

1) Computational complexity: Generally, the concept of
floating point operations (FLOPs) is used to measure the
computational complexity for NNs. For each fully connected
layer, the number of FLOPs is [Nin + (Nin− 1) + 1]×Nout,
where Nin and Nout represents the number of neurons. For
the centralized DDQN at the BS, the number of FLOPs is
FLOPs(BS) = 2[|S| × NBS

1 + NBS
1 × NBS

2 + NBS
2 ×

NBS
3 +NBS

3 × (3N ×O)], where |S| denotes the dimension
of the input state, NBS

µ represents the number of neurons in
µ-th layer of the DDQN at the BS. For the D3QN model
at each D2D pair, the number of FLOPs is FLOPs(i) =
2[|z(i)| ×N1(i) +N1(i)×N2(i) +N2(i)× (Ap×K)], where
|z(i)| the dimension of the observation space of Di. Therefore,
the overall computational complexity can be expressed by

Algorithm 2 Centralized DDQN algorithm for the RIS opti-
mization at the BS.

1: Input: Current RIS position and phase, resource alloca-
tion policy;

2: Initialize: action-value function Q with random weights
W , replay memory DRIS , Trained D3QN framework for
resource allocation;

3: for each epoch do
4: Update the large-scale fading channel;
5: for each training step t do
6: Observe state St;
7: Choose at ∈ A according to ε-greedy algorithm;
8: Execute at and update the small-scale fading chan-

nel;
9: Execute D3QN and perform resource allocation;

10: Calculate reward rRISt by (19);
11: Observe st+1;
12: Store transition eRISt = (St, at, rRISt ,St+1) in D;
13: end for
14: if learning begins then
15: Replay memory:
16: Sample random minibatch of transitions

(Sj , aj , rRISj ,Sj+1) in DRIS ;
17: Calculate qRIStarget according to (17);
18: Perform a gradient descent step on

(qRIStarget − q(Sj , aj ;W ))2;
19: end if
20: end for
21: Return: action-value function and optimized action a.

FLOPs = FLOPs(BS)︸ ︷︷ ︸
At the BS

+

I∑
i=1

FLOPs(i)︸ ︷︷ ︸
At D2D pairs

. (21)

Note that the proposed D3QN models for resource alloca-
tion could be trained offline because it is robust to the dynamic
environment. Compared to the alternative maximization (AM)
approaches [31]–[33] that optimize the resource allocation and
RIS configuration by iterations, the proposed trained model
only requires a little computational complexity to generate
solutions.

2) Communication cost: Compared with the centralized
algorithms that the users need to upload the local information
to the BS and receive the optimized control signals from the
BS, the proposed decentralized resource allocation algorithm
enables users complete the resource allocation process locally,
thus reducing the communication cost significantly. Due to
the fast channel variation, the AM approaches via several
iterations are non-applicable, while the centralized DDQN
algorithm for resource allocation requires the global real-time
CSI. Local users will upload the local observation information
to the BS in each training step, which causes heavy trans-
mission overhead. Assuming that the fast fading is updated
every 1ms, while the pathloss and shadowing are updated
every 100ms, which means we also set Ts = 100 training
steps in each training epoch. The fast fading channel and
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large scale fading channel are renewed in each training step
and epoch, respectively. Therefore, for the resource allocation
task, the uplink communication cost for the centralized DDQN
algorithm is denoted as

CCRL = Te × Ts ×
I∑
i=0

|z(i)|, (22)

where Te and Ts represents the number of maximum training
epochs and the number of training steps in each training
epoch. On the other hand, for proposed D3QN framework,
D2D pairs choose their own access channel and transmit
power under the guidance of the local NN, and only upload
the optimized transmit power and channel assignment results
to the BS in each training epoch. Thereby, the corresponding
uplink communication cost can be given by

CD3QN = Te × I × (K + 1). (23)

In a nutshell, the proposed D3QN framework outperforms the
traditional mathematical solutions and centralized algorithms
in terms of communication cost and computational complex-
ity.

V. NUMERICAL RESULTS

In this section, the performance of the proposed D3QN
framework for resource allocation and centralized DDQN for
RIS optimization are evaluated by comparing it with the
benchmark algorithms. Assuming that the cellular users and
D2D pairs are distributed in a 100m×100m square. The whole
area is divided into O = 16 identical grids, where RIS can
be installed in any of them. We apply the simulation settings
in [39] to model the channel, and the simulation parameters
are listed in TABLE I.

In the proposed D3QN framework, each DDQN consists of
a 5-layer fully connected (FC) NN with 3 hidden layers. The
number of neurons in the three hidden layers are set to 500,
250, and 120, respectively. We apply the rectified linear unit
(ReLU) function as the activate function, which is defined
as f(x) = max(0, x), while the RMSProp optimizer [45]
is applied to train the NNs. Note that the trained resource
allocation model only needs to be updated when the wireless
communication system experience significant changes, thus
the resource allocation model is first trained and remains
unchanged during the optimization of the RIS. We train the
centralized DDQN for 3000 epochs and the exploration rate
ε decreases from 1 to 0.02 over 2700 epochs linearly. The
discount factor γ is set to 0.95.

We compare the proposed D3QN framework with the
following benchmarks:
1) Exhaustive search: Exhaustive search is adopted to ac-

quire the optimal resource allocation and RIS deployment.
2) No RIS and random RA: This scheme does not deploy

RIS for enhancement, and the resource allocation is exe-
cute randomly.

3) Fully random baseline: The random RIS deployment
with random resource allocation scheme is adopted in this
scheme.

TABLE I
SIMULATION PARAMETERS

Parameter Value
Number of D2D users 2× I 4

Number of Cellular users (sub-channels) K 4
Phase shift variable quantity δ π

4
Number of RIS elements N 8

Cellular transmit power range 23dBm
D2D transmit power range [0, 24]dBm

Number of discrete levels Ap 9
Minimum SINR requirements for D2D receiver γDmin 3dB

Minimum SINR requirements for the BS γUmin 5dB
Carrier frequency 2GHz

Bandwidth of each sub-channel 1MHz
Cellular antenna height ZU 1.5m

D2D antenna height ZD 1.5m
BS antenna height ZBS 25m

RIS antenna height ZRIS 10m
Bandwidth of each sub-channel 1MHz

Noise power σ2 −115dBm

4) RIS random baselines: These group of baselines adopt the
random deployment of RIS, where the resource allocation
tasks are optimized by exhaustive search, conventional
DQN algorithm, and the proposed D3QN framework, re-
spectively.

5) DQN: This scheme adopts the conventional DQN for RIS
optimization, while the resource allocation is performed by
decentralized DQN framework.

A. Training performance of proposed algorithms

Fig. 4(a) and Fig. 4(b) demonstrate the training performance
of proposed framework. It is noted that these two figures
shows the loss and the reward of the NN at the BS for the
optimization of RIS. Fig. 4a illustrates the loss comparison.
The loss of the proposed algorithm is lower than the DQN
training method during the whole training epochs and can
achieve faster convergence since it avoids the overestimation
problem caused by the DQN based approach. A lower loss
of the proposed algorithm leads to a higher training reward
since the estimated maximum value of NN is closer to the
practical maximum value. As shown in Fig. 4b, both average
rewards per epoch of proposed and DQN algorithm improve
as training continues, while the proposed DDQN framework
outperforms the DQN method. Due to the high training loss
at the beginning, the DQN method achieve lower reward than
the proposed framework.

B. Effectiveness and robustness testing

In the testing phase, we verify the effectiveness of the
proposed D3QN framework and centralized DDQN model.
The number of testing step is set as 30 epochs and the
exploration rate ε is set as 0 which means the D2D paris
always takes the action that has the highest Q-value. In
each testing epoch, the phase shift and position of RIS are
configured randomly to test the robustness of the proposed
scheme. As illustrated in Fig. 5, the proposed algorithm can
achieve near-optimal performance, reaching over 90% of the
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Fig. 4. Training performance comparison for the RIS optimization at the BS. The trained D3QN models are adopted for the resource allocation task. The
reward curve shows the averaged reward per 30 epochs to enhance the readability.
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Fig. 5. Testing performance of proposed decentralized structure.

optimal solution. Note that the decentralized DQN framework
achieves less sum rate than the proposed framework because
the DQN based algorithms suffers from the overestimation
problem, thus cannot take appropriate action to maximize the
objective function and guarantee the SINR requirements for
the BS and D2D receivers.

We also illustrate the effectiveness of the proposed al-
gorithm. Fig. 6 illustrates a snapshot of the optimized RIS
location. We can see that the RIS is located near the BS to
enhance the cellular uplink rate, while stay far away from
the D2D pairs to lower the interference to cellular networks
caused by D2D communications.

Furthermore, we compare the proposed framework with
other benchmarks in various wireless communication scenar-
ios to verify the robustness and effectiveness of the proposed
algorithm. Fig. 7 shows the sum rate performance under
various SINR scenarios. It is observed that the sum rates of all
schemes monotonically decrease with higher noise power. As
expected, the proposed algorithm shows near-optimal perfor-
mance, and outperforms the decentralized DQN and random
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D2D pairs
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Fig. 6. The RIS location optimization result.

scheme in all the cases. On the other hand, even if the resource
allocation have been optimized, the random RIS scheme has
significant performance loss, which verify the effectiveness of
RIS phase shift and location optimization. The fully random
scheme and the conventional wireless communication scheme
fail to leverage the enhancement of RIS, providing less than
60% of the optimal sum rate.

Fig. 8 demonstrates the sum rate with different number of
cellular users. With the increasing of accessible channels, the
sum rates of all schemes increases. We also investigate the
sum rate improvement over 4, 8 and 16 RIS elements. It is
obvious that more RIS elements can improve the sum rate of
the considered network, while the performance improvement
slows down as the number of elements becomes larger. This
is because the interference between D2D communications and
cellular networks increases as well. Meanwhile, the computa-
tional complexity for RIS optimization at the BS also increases
with more RIS elements. In practice, it is worth determining
the number of RIS elements to strike a tradeoff between the
sum rate performance and the training complexity.
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Fig. 7. Sum rate comparison over different noise power the optimized and
random RIS deployment.
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Fig. 8. Sum rate over the number of cellular users K with different number
of RIS elements.

VI. CONCLUSION

In this paper, we aim to maximize the sum rate of the
device-to-device users and the cellular users. To solve the non-
convex problem with lower complexity, a novel decentralized
double deep Q-network framework for resource allocation
and a centralized double deep Q-network framework for RIS
optimization have been proposed. We decoupled the joint
optimization task into sub-problems and reduced the compu-
tational pressure at the central BS by decentralized resource
allocation problem. Leveraging the double deep Q-network
algorithm, the overestimation challenge has been overcome.
Communication cost and computational complexity analysis
and simulation results show that the proposed algorithm
achieved the near-optimal performance while offloading the
computational pressure from the base station significantly. The
proposed framework is verified to be robust to fast channel
variations and various noise scenarios. It also outperforms the
other benchmarks in terms of the achieved sum rate.
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