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Abstract— This paper reports the design, manufacture and 

characterisation of a new frequency selective surface (FSS) 

structure which meets the demanding requirements for 

transmission of 50.2 – 57.7 GHz radiation simultaneously for TE 

and TM polarizations at 45 incidence, and reflection of signals in 

four discrete higher frequency bands centered at 89 GHz, 165.5 

GHz, 183.3 GHz and 229 GHz. The FSS is required for a quasi-

optical network, which was developed during preparatory 

breadboarding of the Microwave Sounder instrument. The 

100 mm diameter ultra-wide band FSS must exhibit ≤0.25 dB loss 

for all signals in the above bands, and has to satisfy the 

requirements of the space environment. The FSS is formed by a 

periodic metal film array sandwiched between two 0.83 mm 

thick, optically flat, fused quartz substrates. It has 19,000 unit 

cells composed of two compact resonant slot elements, a 

meandering elliptical annulus and a folded dipole. Spectral 

transmission and reflection measurements in the 50 – 230 GHz 

frequency range yielded results that are in excellent agreement 

with numerical predictions. 

 
Index Terms—Dichroic filters, Earth observation instruments, 

frequency selective surfaces (FSS), micromachined structures, 

quasi-optical technology 

I. INTRODUCTION  

HE MicroWave Sounder (MWS) radiometer is a 

spaceborne across-track scanning instrument [1], [2], that 

provides measurements of temperature profiles, water vapour 

profiles and information on cloud liquid water, key input 

parameters for numerical weather prediction [3]. To satisfy 
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satellite payload constraints on volume, cost, mass and energy 

consumption, the radiometer uses a single mechanically 

scanned reflector antenna to collect radiation over a wide 

frequency range, from 23 GHz to 230 GHz. Within the MWS, 

it is therefore necessary to separate spectrally the linearly 

polarized TE or TM signals of the complete frequency range 

into five discrete bands.  

 

The approach selected in the study [1], uses a quasi-optical 

feed train with four different FSS that are orientated at 45 to 

the direction of the wave propagation. Fig. 1 illustrates this 

frequency demultiplexing arrangement. The network design 

and performance is reported elsewhere [4]. It exploits a 

previously developed high performance FSS 1 [5]. We present 

here the design, manufacture and measured performance of the 

second demultiplexing element, FSS 2. This is technically the 

second most challenging FSS in the network because it is the 

only dichroic element which is required to simultaneously 

transmit both TE and TM waves in the resonant 50.2 – 57.7 

GHz passband, and to reflect higher frequencies.  

 
Fig. 1.  MWS breadboard’s frequency demultiplexing scheme.  

 

Table 1 presents the frequency, polarization and 

transmission/reflection requirements for FSS 2. Within each of 

these channels, the insertion loss specification is ≤0.25 dB in 

order to meet the instrumental requirements to achieve state of 
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the art receiver sensitivity and noise performance. 

Table 1: Frequency, polarisation and operating mode 

requirements on the FSS 

Channel 

frequency 

(GHz) 

Frequency 

bandwidth 

(%) 

 

Polarisation 

 

Mode 

54 13.9 TE & TM Transmission 

89 4.5 TM Reflection 

165.5 1.8 TE Reflection 

183.3 8.7 TE Reflection 

229 0.9 TE Reflection 

 

This paper describes the major advances that have been made 

to satisfy these stringent FSS specifications. Our design 

solution has been achieved by a synergy of innovative periodic 

array design and numerical optimization performed using a 3D 

electromagnetic  simulator [6], development of state-of-the-art 

micromachining processes and spectral testing of the FSS 

using two different quasi-optical measurement systems [7, 8]. 

 

A critical requirement for this low-pass FSS is to exhibit 

coincident spectral responses for dual polarization excitation 

at 45 oblique incidence. In previously published work, 

several different low-pass, polarization independent, slot FSS 

suitable for use in Earth observation instrumentation have 

been reported [9, 10].  These structures were designed to meet 

the conflicting requirements of low-loss and fast spectral roll-

off above resonance [11], to provide signal separation of two 

closely spaced narrow band frequency channels. In [12], dual 

polarized operation was obtained from a high-pass FSS 

composed of a periodic array of Jerusalem cross-slots which 

was designed to transmit radiation over a narrow band, 2 % 

wide, centered at 664 GHz. The spectral performance of the 

FSS design reported below differs significantly from these 

aperture element filter structures, and the requirements are 

much more challenging for three reasons, i) the FSS must 

exhibit a very much wider (14%) passband in transmission 

resonance, for both TE and TM polarisations, at 45 incidence, 

ii) grating lobes and signal leakage through the unit cell 

apertures, which are designed to resonate and generate a 

passband centered at 54 GHz, must be suppressed in order to 

obtain losses of 0.25 dB in channels from  89 GHz to 

230 GHz for either TE or TM waves, and (iii) the FSS must 

operate over a max: min frequency ratio of 4.6:1. In addition, 

the FSS must be sufficiently robust to meet the structural, 

vibrational and thermal demands of spaceborne 

instrumentation. 

 

The organization of the remainder of this paper is as follows.  

In section II the design and theory of operation is described 

along with the construction method for forming the periodic 

aperture elements.  The computed spectral performance for an 

infinite array environment is presented. Section III describes 

the key processing steps that were used to construct the FSS, 

including the creation of the highly conductive perforated 

metal screen, and the wafer bonding technique which was 

implemented to prevent the formation of voids between the 

superstrate and substrate. In Section IV quasi-optical 

transmission and reflection measurements are presented and 

discussed. Finally a summary of the work and conclusions are 

presented in Section V. 

II. FSS DESIGN  

The FSS structure consists of an array of 19,000 compact unit 

cells on a 100 mm diameter substrate. Each element composed 

of two nested slot resonators on a skewed grid, Fig. 2. The 

slots are formed in a metal layer which is sandwiched between 

two optically flat, 0.830 mm thick fused quartz substrates. A 

10 µm thick layer of low loss glue (BCB), with electrical 

characteristics of tan = 0.008 and  r = 2.65, is used to bond 

the two substrates together, forming a robust structure: Fig. 3.  

The glue layer has been simulated in the model to account for 

frequency shifts introduced by material changes at close 

proximity to the resonant slots, this improves the modelling 

accuracy.  The metal is 3 µm thick copper, with a conductivity 

of 5.8x107 S/m, and the fused quartz layers have a permittivity 

r =3.78 and loss tangent tan = 0.004. At 54 GHz, the 

passband center frequency, the combined electrical thickness 

of the quartz is selected to be /2, and therefore this provides a 

good impedance match to free space.  The meandered  

elliptical shaped slots, Fig 2, are designed to resonate at 54 

GHz and therefore to transmit corresponding signals with low 

insertion loss. A folded linear /2 dipole slot is inserted in the 

centre of each ellipse to achieve low loss in the lowest 

frequency reflection band, at 89 GHz. This second slot 

introduces a transmission resonance at 106 GHz which 

improves performance at 89 GHz on the basis that between 

any two resonant peaks there is an anti-resonance [13].  

 
Fig.  2. FSS unit cell showing nested resonators on a skewed 

grid, the direction of propagation (θ = 45°,  = 0°), and field 

orientations. Optimised design parameters (µm): dx = 600, dy 
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=690, a = 335, b = 230, w1 = 21, T = 24, h = 88, w2 = 18, d = 

52, l = 98, grid angle = 66.5. 

 

The design dimensions were optimised to achieve the required 

low loss using the CST Microwave Studio frequency domain 

solver: Fig. 3.  The numerical modeling included effects of the 

glue and metal thicknesses.   

 

 
Fig.  3. Top: Unit cell as entered in CST for optimization and, 

bottom, indication of cross-section of the FSS. 

 

Emphasis was placed on minimizing the unit cell periodicities 

in the x and y direction in order to suppress the appearance of 

grating lobes in the higher frequency reflection bands. This 

design strategy also increases the width of the passband and 

simultaneously reduces the sensitivity of the FSS to changes in 

incidence angle. The latter requirement is that performance is 

maintained over ±2, since the FSS is positioned at the 

network beam waist. Close packed array elements were 

achieved by meandering the resonators to make the unit cell 

more compact, by encasing the aperture elements in dielectric, 

and by skewing the grid. The two former features produced an 

80% reduction in annulus diameter, when compared to free-

space slots resonating at the same frequency.     

 

To implement the convoluted elliptical slot design,  a Matlab 

script was written to allow efficient control of the design 

parameters. The procedure started with a standard ellipse 

plotted as a series of x and y coordinates for 0 < θ < 2π: 

 

𝑥(𝜃) = 𝑎 cos(𝜃),   𝑦(𝜃) = 𝑏 sin(𝜃)        (1) 

 

θ is the angle relative to the centre of the ellipse, a and b are 

the semi-major and semi-minor axes of the ellipse 

respectively. The x, y positions of the centers of each of the 

meander cells were calculated. A large number (N = 10000) of 

linearly spaced values of θ were used, and the total length of 

the ellipse was approximated by summing the Euclidean 

distances between consecutive x, y coordinates: 

 

𝑙𝑒𝑛𝑔𝑡ℎ =  ∑ √(𝑥𝑛 − 𝑥𝑛−1)2 + (𝑦𝑛 − 𝑦𝑛−1)2𝑁−1
𝑛   (2) 

 

The meander cells were then equidistantly spaced around the 

circumference of the ellipse. The interpolation function in 

Matlab (interp1) was used to find the values of θm 

corresponding to the equidistantly spaced points. These values 

were entered into equations 1 and 2 to provide the xm, ym 

coordinates of each meander cell. 

 

The centre line coordinates of the slot resonator were then 

calculated. The top and bottom edges of the meanders, of 

length T, were drawn at a tangent to the ellipse at each set of 

xm, ym coordinates. The tangent at each of these points was 

approximated as the tangent of a circle having a curvature that 

closely fits that of the local points on the curve.  The radii of 

these circles were calculated using the radius of curvature: 

 

𝑅(𝜃) =  
1

|𝜅(𝜃)|
          (3) 

 

Where the curvature, κ, of the ellipse, was approximated at 

each point using: 

 

𝜅(𝜃) =  
𝑎𝑏

(𝑏2𝑐𝑜𝑠2(𝜃)+𝑎2𝑠𝑖𝑛2(𝜃)) 3/2      (4) 

 

 
Fig.  4. Geometry and design of meandered elliptical slot 

resonator. 

 

These straight edges were consecutively transformed by h/2 

and –h/2 along their normal, where h is the length of the 

meander, and the ends of the consecutive transformed lengths 

were joined together to give the side edges of the meander 

centre line.  The inner and outer edges of the slot resonator 

were then calculated by considering the meander centre line as 

a series of individual straight line segments. Each individual 

segment was transformed by ±w/2 along the normal to that 

segment (where w is the resonator slot width). The 

interception points of the consecutive transformed lines were 

then used to provide the corners of the inner and outer edges 

of the slot, the latter of which is illustrated in Fig. 4. The x, y 

coordinates of the inner and outer slot edges were then 

exported as lists in text file format, which were imported into 
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CST using the polygon curve function.  The remaining model 

geometry was drawn using CST standard CAD layout tools.     

 

Fig. 5 depicts the predicted spectral transmission and 

reflection plots obtained after optimization of the dimensions 

of the unit cells. The results are illustrated from 20 – 230 GHz 

for both TE and TM signals in the transmission band (green) 

and four reflection bands (brown). Maximum predicted losses 

in each band are summarised in Table 2 in Section IV: the 

worst case loss is 0.18 dB at 89 GHz. The predicted 

performance of the FSS is therefore well within the 0.25 dB 

specification.  

 

 

 
 
Fig.  5. Simulated spectral transmission (S21) and reflection response 

(S11) for the FSS at 45 incidence for TE and TM waves. The green 

and brown rectangles respectively show the transmission and 

reflection bands needed for the Microwave Sounder instrument. 

 

 

To illustrate the FSS operation, Fig. 6 shows the computed 

surface electric fields at 54 GHz (TE) and 106 GHz (TM), 

corresponding to the  and /2 resonances of the outer 

elliptical slot and the inner folded dipole, respectively. The 

effect of these resonances can be observed on the curves 

shown in Fig. 5. The 89 GHz reflection band, caused by an 

anti-resonance, lies between two TM peaks (red curve). In the 

design process the independent /2 slot dimensions were 

optimized to increase the depth of the 89 GHz transmission 

null. Fig. 7 shows the difference in the performance of the FSS 

around 89 GHz caused by the introduction of the folded /2 

dipole. A reduction in the reflection loss of about 0.1 dB, to 

0.26 dB, was thereby obtained.  

 

 
(a) 

 

 
(b) 

 
Fig.  6. Computed resonant electric fields at the metal surface of the 

FSS for (a) 54 GHz TE polarization, when the elliptical slot is 

excited, and (b) for 106 GHz TM, which couples to the folded dipole. 

 

 
 

Fig.  7. Predicted TM reflection loss of the 89 GHz channel without 

(*dashed curve) and with (solid curve) the folded /2 slot dipole 

inserted in the unit cell. 
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III. MANUFACTURE  

 

The FSS was fabricated using precision micromachining 

techniques in a cleanroom environment. Prior to processing, 

polished optically flat fused quartz substrates are matched in 

terms of their low bow and warp,  10 µm, and are paired. The 

aperture elements are patterned on the surface of a metal layer 

deposited on the surface of one of the quartz substrates. The 

key manufacturing steps are shown in Fig. 8, and follow.  Step 

1: after cleaning, the quartz substrate is sputter coated, by DC 

magnetron sputtering, with a titanium 20 nm adhesion layer 

and a 250 nm copper layer. This copper layer provides a seed 

layer for high conductivity copper electroplating. Step 2: Prior 

to electroplating a 7 µm thick positive resist layer, AZ9260 is 

spun onto the quartz substrate and patterned using a UV 

exposure system.  This transfers the element design onto the 

copper seed layer with the required manufacturing tolerance of 

± 2 µm. Step 3: Photolithography completed, a 4.5 µm copper 

layer is electroplated onto the exposed copper seed layer. The 

electroplating solution provides high conductivity copper with 

low stress. To improve the surface quality of the electroplated 

copper and to remove any copper islands (due to high current 

spots during electroplating), a surface polishing step is 

implemented. Step 4: A chemical mechanical polishing system 

is used to polish the metal. The polishing slurry is a mix of 

NH4OH, 0.3 μm alumina abrasive and deionised water. The 

copper layer was reduced to a thickness of 3.5 µm, leaving a 

flat copper surface with a RMS roughness of <150 nm.    Once 

the copper is polished the resist pillars are removed in an 

ultrasonic solvent bath.  Step 5: The original copper seed and 

titanium adhesion layers are subsequently chemically removed 

using controlled chemical etching solutions.    Step 6:  

Cyclothene [14] benzocyclobutene (BCB) is used to form the 

adhesive layer between the quartz substrate containing the 

element design and the quartz superstrate.  Ten microns of 

glue provides sufficient thickness at the interface, to fully 

bond across the complete surface when substrates with a 

similar flatness to the glue thickness are used.    Thinner layers 

of glue were found to leave bond voids at the interface. 

Following spin coating of an adhesion promoter, a 10 µm 

BCB layer (5% uniformity) is spun onto the unpatterned 

quartz and partially cured at 120oC for 20 mins. The two 

quartz pieces are placed in contact ready for the bonding 

process.  Step 7: The quartz/BCB/quartz assembly is placed 

between two polished metal plates in a customized vacuum 

bonding system.  By bonding under vacuum, air voids that can 

be detrimental in a space environment and to the device’s RF 

performance are prevented.   The bond chamber was 

evacuated to a pressure of ~ 6x10-2 mbar. A pressure of 3.5 bar 

applied across the plates for 2 hours. In order to fully cure the 

BCB the bonded pair is heated to 250oC for a further 2 hours. 

After cooling to ambient, pressure on the bond plates is 

released and the chamber brought back to atmosphere.  

 

A photograph of the polished copper surface of the FSS before 

BCB coating is shown in Fig. 9, along with the completed FSS 

in its holding bracket. This shows the closed packed nature of 

the elliptical outer and the inner linear slots. Dimensional 

characterization using an optical measurement method showed 

that slot and periodic dimensions were typically within 2 µm 

of desired values. As a further verification, the mm-wave 

transmission of the patterned metal layer before bonding was 

also measured and compared with CST predictions.  

 

 
Fig.  8. Key steps in the FSS manufacture. 

 

Preliminary environmental space qualification testing has been 

carried out on this type of FSS structure [5].   This involved 

thermal cycling in dry nitrogen, vibration testing including 

random and sine vibration.  Inspection and full 

electromagnetic characterisation over the MWS channels 

before and after each series of applied stresses demonstrated 

that the FSS was not adversely affected. 

 

 

7. Bonding two quartz substrates 

2. Patterning resist on seed layer for electroplating. 

3. Electroplating Cu (~ 4.5 µm) 

 

4. Copper polishing back to ~ 3 µm 

 

5. Photo resist removal and seed layer etch 

6. Cyclotene “3022-56”-BCB film (on second quartz 

substrate) 

 

1. Seed layer (Ti/Cu) coating using DC magnetron 

sputtering (~ 250 nm) 

 

Quartz substrate 

Ti/Cu seed 
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Quartz substrate 

Quartz substrate 

Quartz superstrate 

 

Quartz substrate 
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Quartz substrate 
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Fig.  9. Photographs (top) of the polished patterned copper on 

the quartz FSS substrate before attachment of the superstrate 

and (bottom) placeholder of the completed FSS in its mount.  

IV. MEASURED RESULTS  

The transmission and reflection coefficients of the 

manufactured FSS filter were measured at 45o incidence in the 

each of the five MWS instrument channels for both TE and 

TM polarisations. Measurement uncertainty is around 0.05 dB 

for transmission and reflection values very close to unity. For 

the two channels below 100 GHz, the measurements were 

made at Rutherford Appleton Laboratory using the quasi-

optical bench shown in Fig. 10. For frequencies above 100 

GHz, the FSS characterisation was performed at QUB, the 

quasi-optical test setup is shown in Fig. 11. Both test setups 

are based on quasi-optical free-space techniques to create a 

beam-waist at the position of the device under test (DUT) 

using components like mirrors, grids, horns etc. The horn and 

mirror design of the two quasi-optical test benches are 

optimised to work above (QUB) and below (RAL) 100 GHz, 

in order to provide plane wave illumination across the FSS in 

conjunction with the removal of truncation effects.   Both 

setups use PNAs from different suppliers, the model numbers 

are given in the text wherever appropriate.   The network used 

matched pairs of pyramidal horns and high gain ultra-

Gaussian corrugated horns to cover the frequency bands 50-

75 GHz and 75-100 GHz respectively. The feedhorns were 

aligned on the quasi-optical bench and connected to the 

Agilent PNA (Model numbers N5225A and E8361A for 

frequencies above and below 75 GHz respectively) and VDI 

millimetre wave modules (Model number N5262AW10 for 

75-100 GHz measurements). The latter were fitted with 

waveguide isolators to reduce standing wave effects. Residual 

impedance mismatches in, for example the feedhorns, leave a 

root mean square ripple of about 0.02 dB. A common set of 

four off-axis parabolic mirrors (M1-M4) and a pair of plane 

mirrors (P1, P2) were used to direct and focus the beam to 

produce a waist at the FSS position. Wire grid polarisers (G1, 

G2), set at 45o incidence, were introduced in both input and 

output beams just before and after the device under test 

(DUT), to ensure the beam polarisation purity for both 

reflection and transmission characterisation. A visible diode 

laser alignment system was used to ensure positional 

reproducibility during exchange of the DUT and its reference: 

this is particularly important for the reflection measurement.  

 

The QUB test setup comprised an ABmm VNA (Model 

number MVNA-8-350-2) interfaced to a Thomas Keating [15] 

quasi-optical test bench: the reflection setup is shown in Fig. 

11.  It was configured to provide over 60 dB dynamic range 

and ±0.05 dB signal uncertainty in the operating bands. The 

system consists of two identical broadband circularly 

symmetric corrugated feed horns connected to the transmitting 

and receiving ports of the VNA. The bench consists of a series 

of ellipsoidal mirrors that provide a highly focused Gaussian 

beam at the FSS sample position.  At this position, a beam 

waist is formed, and the wave front can be considered plane 

wave. 

 

 
 

Fig.  10. Test setup for FSS reflectivity measurements, at 

frequencies below 100 GHz. 

 

The largest beam is at the lowest frequency, 164 GHz, where 

the waist ωo = 9.33 mm.  At this frequency the edge 

illumination is very small, below -80 dB, therefore effects of 

the finite filter size can be ignored. For both RAL and QUB 

systems, a reference signal across the full waveguide band is 

obtained a) for transmission by inserting the empty FSS holder 

into the beam and b) for reflection by using a plane metal 

mirror in the place of the DUT in the FSS holder. Afterwards, 

the filter is introduced and S21 measurements made. The 

feedhorns and polarisers were then rotated by 90o and the 

measurements repeated for the orthogonal polarisation. 
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Fig.  11. Test setup for FSS reflection measurements at 

frequencies 100 GHz.  

 

The FSS was mounted on a translation stage for reflectivity 

measurements, as it has been found that the effective 

reflecting plane is within the structure, and not at the front 

surface as for the metal reference reflector. The effects of 

unwanted reflections were reduced by applying a time gating 

procedure to the measured responses [16], (RAL set-up) and 

by placing absorbers in the beam path in the (QUB set-up) 

case.  Time gating is a Fourier transform technique applied to 

reduce high frequency standing waves arising from undesired 

secondary reflections in the setup, such as slight mismatches 

from the horns and reference plate.  Fig. 12 data shows how 

the application of time gating can remove the unwanted test 

set artefacts.   In the QUB case, absorbers were effectively 

used to attenuate the secondary signals that reflect back and 

forth in the QO network.   

 

The 50 – 58 GHz transmission measurements are shown in 

Fig. 12a, b. The filter generally exhibits the desired very high 

transmission for both TE and TM polarizations, with all losses 

less than 0.38 dB and 0.23 dB respectively. Measured 

insertion losses are slightly higher than the predictions, on 

average by about 0.15 dB for TE and 0.1 dB for TM.  There is 

general good agreement between the trends of the predicted 

and measured curves.  

 

 
(a) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)           

Fig.  12. Simulated (red) and measured (blue) transmission 

band measurements 50 - 58 GHz, (a) TE, (b) TM. The time 

gated averaged data are indicated by the smooth plotted dark 

blue line.  

 

Reflection losses from the FSS are shown in Fig. 13 for each 

of the specified bands centered at 89, 165.5, 183 and 229 GHz.  

The maximum experimental losses are 0.33, 0.11, 0.13, and 

0.22 dB respectively. In all cases, the measured losses are in 

very good agreement with predictions, with the largest 

discrepancy observed to be  0.15 dB  at 89 GHz: Table 2.    

 

 

 

 
(a) 

 

 
 

(b)   
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 (c) 

 
   (d) 

Fig.  13. Simulated (red) and measured (blue) reflection 

measurements in the specified bands centred at: (a) 89 GHz 

(TM), (b) 165.5 GHz (TE), (c) 183 GHz (TE), (d) 229 GHz 

(TE).  The averaged data are indicated by the smoothed 

plotted dark blue line. 

 

Commenting on the FSS measurements, the device meets the 

0.25 dB performance specification in the MWS channels over 

the entire frequency range 50 - 230 GHz, apart from for TE 

polarisation in transmission between 53 and 58 GHz, where an 

excess loss of 0.13 dB is measured, and in TM reflection at the 

low frequency edge of the 89 GHz channel, where the loss is 

0.08 dB higher than required.    

Table 2: FSS insertion losses, requirements, predictions and 

measurement worst cases 

Centre 

Frequency 

(GHz) 

FSS Insertion Loss (dB) 

Requirement Prediction Measurement 

 

54 (TE) ≤ 0.25 0.14 0.38 +/- 0.05 

54 (TM) ≤ 0.25 0.14 0.23 +/- 0.05 

89 (TM) ≤ 0.25 0.18 0.33 +/- 0.05 

165.5(TE) ≤ 0.25 0.07 0.11 +/- 0.05 

183.3(TE) ≤ 0.25 0.05 0.13 +/- 0.05 

229(TE) ≤ 0.25 0.12 0.22 +/- 0.05 

 

 

V. CONCLUSIONS 

 

We have developed an ultra-wide band FSS design that works 

from 50 – 230 GHz and exhibits low loss, between 0.11 dB – 

0.38 dB, across the five frequency bands of the MWS 

instrument.  A novel method of nesting two slot resonators in 

each unit cell has been implemented to provide coincident TE 

and TM spectral responses and improved insertion loss 

performance in the first reflection band centered at 89 GHz.      

The FSS manufacturing technique is based on bonding 

optically flat low loss fused quartz substrates combined with a 

high conductivity patterned metal sandwich layer.  This 

approach provides high mechanical strength and rigidity for 

the construction of large arrays of shaped elements, such as 

meandered annular and linear slots, which are reported in this 

paper.    The construction method has excellent thermal and 

mechanical stability needed for its demanding operating 

environment, as demonstrated by successful preliminary 

qualification tests [5]. Although the maximum measured 

losses of this FSS are slightly higher than the specifications in 

two bands, the overall performance of the quasi-optical system 

was maintained by performance improvements achieved in 

other FSS [1, 5].  Precision spectral transmission and 

reflection measurements, made independently at QUB and 

RAL are in good agreement with simulated results and 

confirm that the design and manufacturing techniques are 

suitable for meeting the stringent electromagnetic (and 

environmental) requirements for the MWS instrument.   
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