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Abstract—Wideband spectrum sensing is a highly desirable
feature in cognitive radio systems when the aim is to increase the
probability of exploring spectral opportunities. Sub-Nyquist sam-
pling has attracted significant interests for wideband spectrum
sensing, while existing algorithms can only work with a sparse
spectrum. In this paper, we propose a sub-Nyquist wideband
spectrum sensing algorithm that achieves wideband sensing
independent of signal sparsity without sampling at full bandwidth
by using the low-speed analog-to-digital converters based on
sparse Fast Fourier Transform. To lower signal spectrum sparsity
while maintaining the channel state information, we pre-process
the received signal through a proposed permutation and filtering
algorithm. The proposed wideband spectrum sensing algorithm
sub-samples the time-domain signal and then directly estimates
its frequency spectrum. We derive and verify the proposed
algorithm by numerical analysis and test it on real-world TV
white space signals. The results show that the proposed algorithm
achieves high detection performance on sparse and non-sparse
wideband signals with reduced runtime and implementation com-
plexity in comparison with the conventional wideband spectrum
sensing algorithms.

Index Terms—Wideband Spectrum Sensing, Sub-Nyquist Sam-
pling, sparse Fast Fourier Transform, TV White Space.

I. INTRODUCTION

COGNITIVE radio algorithms opportunistically access the
underutilized spectrum by seeking and utilizing tem-

porarily vacant frequency bands [2], [3]. To enable dynamic
spectrum access, sensing the spectrum before transmission
is an important stage for the secondary user (SU) in order
to detect the presence of the primary user (PU). Accurate
spectrum sensing allows unlicensed SUs to access the unused
spectrum opportunistically, without causing interference to the
transmissions of the licensed PUs.

To increase the probability of finding unutilized spectrum,
wideband spectrum sensing is highly desirable for cognitive
radio systems [4]. An important application of wideband
spectrum sensing is the cognitive access to the unused portions
of the UHF spectrum in the TV bands, the TV white space
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(TVWS), which is composed of these channels that are not
used by digital terrestrial television (DTT) or programme
making and special events (PMSE) users, and those freed up
by the switch-over from analogue to digital TV broadcast-
ing [5], [6]. Compact and low power white space devices for
rural broadband/WiFi-like accesses and Machine-to-Machine
(M2M) communications could therefore be operated by SUs
on these vacant channels without interfering with the primary
transmissions [7], [8].

Fast and accurate detection of the surrounding spectrum is
crucial to enable dynamic spectrum access over TVWS that
does not cause interferences to PUs [9], [10]. One major
current approach to discover available TVWS channels is
using a Geo-location database [5]. However, this approach
requires an initial wired or wireless link available at the master
white space device in order to report its location to the central
database. Moreover, rapid dynamic changes of the wireless
environment pose significant challenges to this database-only
approach. Dynamic spectrum sensing and its combination with
database approaches could address these challenges [11].

In the wideband regime, a major challenge arises from the
stringent requirements on the high sampling rate at the analog-
to-digital converters (ADCs) to transform the received signal
into a digital signal by sampling at the Nyquist rate [4]. In [12],
Quan et al. proposed a multiband joint detection scheme that
can sense the primary transmissions over multiple frequency
bands simultaneously. Furthermore, Tian and Giannakis pro-
posed a wavelet-based wideband spectrum sensing algorithm,
which exploits wavelet transform to scan through the wide
bandwidth to identify all piecewise smooth subbands [13].
However, these algorithms require high sampling rate in order
to characterize the entire wide bandwidth, which presents
significant challenges in the high-speed sampling hardware
and signal processing algorithms.

A simple approach to relax the high sampling rate re-
quirement for wideband spectrum sensing is to use a tun-
able narrowband bandpass filter at the radio-frequency (RF)
front-end to scan through all of the narrow channels one
by one to detect the existence or non-existence of licensed
primary transmissions [14], [15]. However, the sequential
nature of such schemes could introduce a long sensing period.
Such delay in the sensing process will also cause missed
opportunities or interferences to PUs. In [16], a filter bank
algorithm was proposed to process the wideband signal by
multiple narrowband bandpass filters with different shifted
central frequencies. However, it requires a great number of
RF front-end components, e.g., bandpass filters, ADCs, and
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therefore significantly increases the cost.
Sub-Nyquist sampling techniques implement wideband

spectrum sensing using lower-than-Nyquist sampling rates to
reduce the requirements of high-speed signal processing [17].
Compressed sensing (CS) can be used to implement wideband
sensing by exploiting the sparseness of the wideband signal in
the frequency domain [18]. CS-based wideband sensing has at-
tracted considerable attention for wideband signal acquisition
because it uses fewer measurements [19]–[25]. However, CS
based approaches require random sub-Nyquist projections of
the wideband signals [26], which cannot be done simply by
using the standard low-rate ADCs. Therefore, custom ADCs
with complex hardware that can perform analog mixing or
analog matrix multiplication at Nyquist rate are needed in
compressive wideband spectrum sensing schemes [27]–[29].

In this paper, we present a novel sub-Nyquist wideband
spectrum sensing algorithm based on sparse Fast Fourier
Transform (sFFT) [30]. To lower signal spectrum sparsity
while maintaining the channel state information, we propose a
permutation and filtering algorithm to pre-process the received
signal. The proposed algorithm works for both sparse and non-
sparse spectrum without sampling at full bandwidth through
the use of low-speed ADCs. Based on the proposed permu-
tation and filtering algorithm, sub-Nyquist wideband sensing
can be implemented even when the signal is highly occupied
by the PUs. Unlike existing sub-Nyquist approaches [18], [19],
the proposed algorithm sub-samples the wideband signal inde-
pendent of signal sparsity and detects the channel occupancy
state based on the estimated spectrum. We derive and verify
by numerical analyses the mathematical model of the proposed
spectrum sensing algorithm. Moreover, we test the proposed
algorithm on real-world TVWS signals. This validation shows
reduced runtime and implementation complexity as well as
high detection performance compared with the conventional
wideband sensing algorithms.

The rest of this paper is organized as follows: Section
II discusses the prior work on spectrum sensing. In Section
III, we present the proposed wideband spectrum sensing
algorithm and each block in the model. The simulations for
the performance evaluation of the proposed sensing scheme
are presented in Section IV on the simulated and real-world
TVWS signals. Finally, conclusions are drawn in Section V.

II. PRIOR WORK

According to the bandwidth of the spectrum of interests,
spectrum sensing can be categorized into two types, narrow-
band spectrum sensing and wideband spectrum sensing [4].
Here, the term narrowband implies that the frequency range is
sufficiently narrow such that the channel frequency response
can be considered as flat.

Traditional narrowband spectrum sensing techniques can be
categorized in three groups, namely matched filtering detec-
tion [31], energy detection [32] and cyclostationary feature
detection [33]. The advantages and disadvantages of these
algorithms are summarized in Table I.

While narrowband spectrum sensing aims to explore spec-
tral opportunities over narrow frequency range, cognitive radio

networks will eventually be required to exploit spectral op-
portunities over a wide frequency range to find more spectral
opportunities and achieve higher opportunistic throughput. As
shown in Table I, wideband spectrum sensing can be broadly
divided into two types: Nyquist wideband sensing and sub-
Nyquist wideband sensing. Nyquist wideband sensing process-
es received signals taken at or above the Nyquist rate, which
leads to unaffordable high sampling rate and implementation
complexity. Sub-Nyquist sampling technique therefore attracts
more and more attention to achieve a more flexible and faster
wideband spectrum sensing, such as compressive sensing and
sFFT, etc.

Compressed-sensing based spectrum sensing acquires wide-
band signals using the sampling rates lower than the Nyquist
rate and detects the spectral opportunities using these com-
pressed measurements. Most CS-based sensing algorithms
typically assume that the wideband signal is sparse in the
frequency domain given the low spectrum utilization, e.g., 3%
in [22], 8% in [19], 10% in [23], 25% in [24], and 30% in [18].
As the secondary market for the spectrum sharing has been
opened to public usage, multiple SUs compete for the TVWS
spectrum resources to serve a large pool of end-users [5].
Since the usage patterns may change from day-to-day or even
from hour-to-hour, there is a wide range of variations in the
spectrum occupancy due to the secondary signals vacating
or coming into existence [34], [35]. Therefore, the wideband
signal may no longer be static and sparse over TVWS, i.e.,
sparsity level may be time-varying and larger than 30% [36],
[37].

The sFFT algorithm estimates the spectrum of a sparse sig-
nal directly from the time-domain sub-Nyquist samples [30].
Compared with DFT, sFFT reports only the positions and
amplitudes of the large magnitude frequency components of
the input signal in the time proportional to the sparsity of the
signal spectrum, as opposed to the signal size. As spectrum
sensing focuses on clarifying the positions of the occupied
frequency bands, it can benefit from the advances of sFFT,
which permit signals whose frequency domain representation
is sparse to be recovered using only a small subset of sam-
ples [30].

However, the performance of the sFFT has strict require-
ments on the input signal sparsity, which limits its application
to only very sparse signals. sFFT outperforms FFT only when
the number of non-zero dominant frequency components κ is
less than O(N/logN), where N is the number of frequency
bins. For example, when signal size equals to N = 222, the
signal sparsity level κ/N should be less than 0.048% [30].
However, the PU’s spectrum utilization is about 20% to
30% [3], and will be higher when the secondary market is
opening for the spectrum sharing to the mobile devices [36].
In [29], a wideband spectrum sensing scheme is proposed for
the spectrum that is not sparse, where its goal is to identify the
changes in the spectrum occupancy, based on the assumption
that although the spectrum is densely occupied, its changes are
sparse. However, it can only detect the spectrum changes, not
the occupancy states over the whole spectrum, and has strict
requirement on the percentage of the spectrum changes, up
to 1%. Hence a flexible and fast wideband spectrum sensing
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TABLE I
SUMMARY OF ADVANTAGES AND DISADVANTAGES OF NARROWBAND AND WIDEBAND SPECTRUM SENSING ALGORITHMS

Algorithm Advantages Disadvantages Ref.

Narrowband Spectrum Sensing Matched filtering Optimal performance Require prior information of PUs [31], [38]

Energy detection No need for prior information;
Low computation cost

Poor performance under low SNR;
Cannot differentiate PUs [32], [39]

Cyclostationary feature detection Valid under low SNR;
Can differentiate PUs High computational cost [33], [40]

Wideband Spectrum
Sensing

Nyquist Rate
Multiband Joint Detection Simple structure High sampling rate [12], [41]
Sequential Scanning Low sampling rate Long sensing time [14], [15]
Filter Bank Algorithm Low sampling rate High implementation complexity [16]

sub-Nyquist Rate
Compressive sensing Low sampling rate High sampling complexity;

Signal sparsity requirements [18]–[25]

sparse Fast Fourier Transform Low sampling rate;
Low reconstruction complexity Strict signal sparsity requirements [30], [42]

Sparsity-Independent Wideband
Sensing

Low sampling rate;
Low reconstruction complexity;
Regardless of signal sparsity

Require prior information of
spectrum occupancy Proposed
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Fig. 1. Block diagram of the proposed wideband spectrum sensing scheme.

scheme that can subsample the wideband signal regardless of
signal sparsity is of great interest.

III. PERMUTED AND FILTERED WIDEBAND SENSING
BASED ON SFFT

In this section we present the signal model and the proposed
scheme for the wideband spectrum sensing, which is composed
of three main blocks: signal permutation and filtering; spec-
trum estimation and multi-channel joint detection, as shown
in Fig. 1.

A. Problem formulation

Without loss of generality, the wideband signal to be moni-
tored is bandlimited with M non-overlapping channels, each of
them with bandwidth B0. The whole bandwidth is B = MB0.
The channels are indexed from 1 to M . Suppose there are
S ≤ M active channels occupied by PUs during the sensing
period with IS denoting the set containing the indices of the
occupied channels. Thus the spectrum utilization ratio of the
primary transmission can be expressed as α = S/M .

If the input signal x is sampled at the Nyquist rate fs in
the observed time Ts, the signal can be discretized as a vector
x ∈ CN , where N denotes the number of Nyquist samples and
can be written as N = fsTs. Let s be the wideband primary
signal expressed as s =

∑M
m=1 sm, where sm is the primary

signal in the channel m. The received signal x at the cognitive
radio front-end can be expressed as:

x = s+ ω, (1)

where ω represents white Gaussian noise with zero mean and
variance σ2

ω . If we denote with k the frequency bin index
(k = 0, 1, ..., N − 1), the Fourier spectrum of x, x̂, can be
computed by DFT as

x̂k =
1√
N

N−1∑
i=0

xie
−j2πik/N . (2)

Since the bins of DFT are uniformly distributed across the
total bandwidth, ignoring the zero frequency, each channel can
be represented by the same number of frequency bins L =
(N − 1)/M = kmu − kml + 1, where kmu and kml are the upper
and lower bin indices of channel m.

The goal of wideband spectrum sensing is to locate the
active channel set IS , namely to detect the presence of the
primary signal in each channel of the input signal.

B. Signal Permutation and Filtering

As sFFT has strict requirements on input signal sparsity, we
propose a permutation and filtering algorithm to pre-process
the received signal to reduce the spectrum sparsity lower than
the sparsity bound of sFFT while maintaining the channel state
information. The proposed permutation and filtering algorithm
is composed of three main steps, namely permutation, filtering
and un-permutation (Fig. 2).

Let the extraction ratio be β and the number of samples
taken on each channel be Lm = bβLc. Given the spectrum
utilization ratio α, the sparsity of the input signal κ = SL =
αML is reduced to κ′ = SLm = αMLm ≈ αβN . Therefore,
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Fig. 2. Flowchart of the proposed signal permutation and filtering algorithm.
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Fig. 3. (left) Input signal spectrum with 3 channels (N = 16), (right) signal
spectrum after permutation. Through the bandpass filter, it can extract the
central frequencies in each channel.

the available range of the extraction ratio to retain faster run-
time of sFFT than FFT is β ≤ βmax = Lm

L = κmax/αM
N/M = κmax

αN ,
where κmax = O(N/logN) is the sFFT’s sparsity bound for
the input signal size N .

Based on the input spectrum utilization α, the extraction
ratio β can be chosen to reduce signal sparsity lower than the
sFFT’s sparsity bound. sFFT can then be applied to reduce
the runtime and computational complexity. However, for the
M -channel wideband signal, it needs M bandpass filters to
extract the subset of central samples from each channel.

To implement the extraction process with low complexity,
we permute the signal through time dilation t 7−→ Mt mod
N at first. As the input signal size N = ML + 1, M is
invertible modulo N 1, where L is the number of frequency
components in each channel, ignoring the zero frequency, L =
(N − 1)/M . In the frequency domain, this translates to the
frequency mapping f 7−→M−1f mod N , where MM−1 mod
N = 1. The inverse of M under mod-N equals to M−1 =
N − L.

As shown in Fig. 3, the l-th frequencies from each of the
M channels (M − m)L + l, m = 1, ...,M , are moved to
(l−1)M+m, l = 1, ..., L in the permuted signal2. Therefore,
the signal components from different channels are uniformly
interleaved with each other in the frequency domain after the
permutation.

Thus, we can pass the permuted signal through one band-
pass filter to extract Lm central frequencies from each channel.
The bandwidth of the filter is Bfilter = βB. Finally, the
frequencies in the filter output are restored to their original
spectral locations by carrying out a reverse time dilation
t 7−→M−1t mod N .

1Suppose there exists an integer M−1, MM−1 mod N = 1. There must
exist an integer a ∈ Z, such that MM−1 = aN + 1 = a(ML + 1) +

1
a=M−1

= (M − 1)ML + M . So M−1 = (M − 1)L + 1 = ML +
1 − L = N − L ∈ Z. Hence M is invertible modulo N and its inverse is
M−1 = N − L.

2[(l − 1)M +m] ·M−1 mod N
= [(l − 1)M +m] · [N − L] mod N
= N · [(l − 1)M +m]−MLl + [M −m]L mod N
= N · [(l − 1)M +m]− l[ML+ 1] + [M −m]L+ l mod N
= N · [(l − 1)M +m− l] + [M −m]L+ l mod N
= [M −m]L+ l.

After the signal permutation and filtering, the sparsity of
input signal has been lowered so that its frequency represen-
tation x̂′ can then be estimated through sFFT.

C. Spectrum Estimation

Based on the permuted and filtered signal x′, we then
subsample it and estimate its spectrum x̂′ based on sFFT [30].

The key idea behind sFFT is to identify the positions
and amplitudes of the large magnitude frequency components
based on the partial measurements from its subsampling
process. For x′ ∈ CN with a κ′-sparse spectrum, it runs two
kinds of loops to estimate the spectrum x̂′: location loops (to
find positions of κ′ largest frequencies) and estimation loops
(to estimate their magnitudes).

The purpose of the location loops is to generate a list of
candidate coordinates IJ ⊂ [N ] which are likely to contain
large magnitude frequency coefficients. Given the set IJ ,
estimation loops are used to determine the magnitude of
the frequency coefficients. The steps below are performed in
location and estimation loops :

1) Random Permutation: Randomly choose an integer σ
that is invertible modulo N , i.e. gcd(σ,N) = 1, and τ ∈ [N ].
Permute the vector x′ with the permutation Pσ,τ as

(Pσ,τx
′)i = x′σi+τ . (3)

The purpose of this permutation is to rearrange signal’s
spectrum by modifying its time-domain permutation.

2) Filtering: Using a flat window function F , obtained
from convolving a standard window function G with a “box
car” window function H , i.e., F̂ = Ĝ∗H , compute the filtered
vector as

y = F · (Pσ,τx′). (4)

It allows a subset of signal with size ω = |supp(F )| to be
extracted for computation without touching all the elements
to achieve sub-linear runtime. In the frequency domain, the
multiplication is equivalent to a convolution of F̂ and P̂σ,τx′.
Random time-domain permutation in the first step changes the
set of coefficients binned into the filter in this step.

3) Subsampling and low-dimensional FFT: Based on a
parameter B dividing N , a low-dimensional spectrum vector
ẑ is computed to estimate the original spectrum, where ẑ is
the rate B subsampling of ŷ, i.e., ẑj = ŷj·(N/B).

Based on the basic property of the Fourier transform: sub-
sampling in the frequency domain causes aliasing in the time
domain [43], ẑ is the DFT of zi = Σ

ω/B−1
j=0 yi+Bj . Therefore,

ẑ can be obtained through subsampling the filtered signal y
via B low-speed ADCs with a decimated sampling rate fs/B,
summing it up, and then computing the B-dimensional DFT.

Define the “hash function” hσ : [N ] → [B] that maps
each of the orignal signal coordinates to one of the B “bins”
in ẑ as hσ(j) = round(σjB/N), and the corresponding
offset Oσ : [N ] → [−N/(2B), N/(2B)] to be Oσ(j) =
σj − hσ(j)(N/B).
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4) Location Loops: Only select the top d · κ′ coordinates
hσ(j) ∈ [B] of maximum magnitude in ẑ that are likely to
contain large coefficients. All elements of ŷ that are closest to
those chosen coordinates in ẑ will be selected for estimation
and kept as the set J , which has the size of dkN/B. Reverse
the coordinates in J to their original positions in x̂′ and output
this set as IJ , i.e.,

IJ = {j ∈ [N ]|hσ(j) ∈ J}. (5)

5) Estimation Loops: After running L = O(logN) itera-
tions of the location loops, count the number of occurrences of
each found coordinate j and only keep the coordinates which
occurred in at least half of the location loops as set I ′J . For
j ∈ I ′J , run L estimation loops to estimate each frequency
coefficient x̂′j as

x̂′j = ẑhσ(j)ω
τj/F̂Oσ(j). (6)

Finally, it estimates all frequencies by taking the median value
of x̂′j on multiple estimation loops.

To balance the cost of the coordinate selection and esti-
mation step, the dimension of ẑ should be selected somewhat
larger than O(κ′) [30]. Specifically, B is chosen as B ≈

√
Nκ′

to achieve the sublinear runtime O(logN
√
Nκ′logN), faster

than FFT to compute the spectrum for current signal sparsity
κ′ up to O(N/logN).

D. Multi-channel Joint Detection (MJD)

The wideband spectrum x̂′ is then divided into a series of
narrowband spectra {x̂′[1], ..., x̂′[M ]}. We jointly detect the
received signal level over multiple frequency channels, which
is to determine the presence or absence of the PU in each
channel.

To perform binary hypothesis testing on each channel, we
decouple the signal in each channel based on the estimated
spectrum x̂′. According to Parseval’s Theorem [44], the signal
power can be calculated by adding the squared FFT bins. Thus,
we compute the test statistics Tm of channel m as

Tm =
1

Lm

kmu∑
k=kml

|x̂′k|2
H1

≷
H0

λ, m = 1, ...,M, (7)

where Lm is the number of extracted samples taken on each
channel after permutation and filtering, H0 and H1 denote the
hypothesis PU absent and PU present respectively and λ is the
threshold above which H1 is declared.

Based on Central Limit Theorem, the test statistic Tm
of channel m approximately follows the Gaussian Distribu-
tion [45]:

Tm ∼ N (σ2
ω, 2σ

4
ω/Lm), H0(m)

Tm ∼ N ((1 + γ)σ2
ω, 2(1 + γ)2σ4

ω/Lm), H1(m),
(8)

where the channel index m = 1, ...,M and γ is the received
SNR at the SU.

The performance of the detection scheme can be evaluated
by two metrics: probability of detection Pd and probability of
false alarm Pf . Pd is the probability of correctly detecting the
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Fig. 4. (a) The power spectrum density (PSD) and (b) real-time TVWS signal
recorded at (51.523021◦N 0.041592◦W).

existence of PU on the sensing sub-channel when it is truly
present and thus can be formulated as

Pd = P (Tm > λ|H1) = Q

 λ− σ2
ω(γ + 1)

σ2
ω(γ + 1)

√
2
Lm

 . (9)

Pf is the probability of falsely testing that the considered
channel is occupied by PU when it is actually not, and can be
computed as

Pf = P (Tm > λ|H0) = Q

 λ− σ2
ω

σ2
ω

√
2
Lm

 , (10)

where Q(x) is the standard Gaussian Complementary Distri-
bution Function (CDF).

To achieve the predefined false alarm probability Pf , the
threshold λ in each channel is set as

λ =

[√
2

Lm
Q−1(Pf ) + 1

]
· σ2

ω, (11)

where Q−1(·) denotes the inverse complementary distribution
function of the standard normal distribution.

E. Application to real-world TVWS signals

The proposed wideband spectrum sensing scheme is further
extended to real-world TVWS signal detection. The TVWS
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ranges from 470 to 698 MHz in North America and the
bandwidth of each channel is 6 MHz, while it ranges from 470
to 790 MHz and the channel bandwidth is 8 MHz in Europe.
The setting is consistent with the current bandwidth used in
TV broadcasting. For a signal with a certain total bandwidth
and extraction ratio, its signal size N and sparsity level after
the proposed permutation and filtering scheme κ′ = αβN are
constant in different channel bandwidth settings, where the
available range of the extraction ratio β is determined by the
signal size N and the spectrum utilization ratio α. Therefore,
the proposed scheme can switch among different bandwidth
settings.

In the paper, the proposed scheme is tested in the real-world
TV signals collected by the RFeye node located at Queen
Mary University of London (51.523021◦N 0.041592◦W. As
observed in Fig. 4 (a), the number of channels M in
TVWS is 40 and strong DVB-T signal is received at channel
{22, 23, 25, 26, 28, 29, 30, 33} in the recorded power spectrum.
Thus the PU’s spectrum utilization ratio is α = 20%.

To obtain each channel occupancy information, we im-
plement the proposed permutation and filtering algorithm to
lower the sparsity level of the received signal before spectrum
estimation via sFFT.

The time domain permutation t 7−→ Mt mod N is firstly
applied to the input signal (e.g. Fig. 4 (b)), which corresponds
to the spectrum permutation f 7−→ M−1f mod N in the
frequency domain. The frequency components from different
channels are uniformly interleaved with each other in the
frequency domain after the permutation.

The signal size N equals to 819199 in Fig. 4. We take the
nearest NFFT = 220 = 1, 048, 576 in power of 2 to get its
spectrum in sFFT. The empirical sparsity bounds κ of sFFT
under 220 is around 420. Thus the range of the extraction ratio
β to retain faster runtime of sFFT than FFT is β ≤ βmax =
0.256%.

Multi-channel filtering is then performed through one band-
pass filter with bandwidth Bfilter = βB to extract the desired
number of central frequencies from each channel.

Finally, the frequencies in the filter output are restored to
their original places by carrying out a reverse time dilation
t 7−→ M−1t mod N . The corresponding permutation and
filtering in the signal spectrum under the extraction ratio
β = 0.25% is illustrated in Fig. 5.

Signal spectrum is then estimated through sFFT based on
its subsampling strategy with faster runtime and low hardware
complexity. Based on the estimated spectrum, we jointly de-
cide the presence or absence of PUs on multiple channels. To
distinguish a channel occupied by PU signal from a spectrum
hole that contains noise only signal, the received signal power
on each channel is computed and compared with the threshold
dependent on the noise variance of the environment.

If the noise spectrum is assumed to be white, the average
noise power can be estimated as

Sn =
1

|W|
∑
k∈W

(x̂k)2, (12)

where W represent the classified noise sets containing the
indices of the unoccupied spectral components. As the grey
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Fig. 5. Permutation and filtering on real-world TVWS signal under β =
0.25%.

dash line in Fig. 4 (a) shows, the average noise power Sn in
the recorded real-time signal is −121 dBm.

However, in practice, real-time noise magnitude fluctuates
with time and radio environment as the noise power is sus-
ceptible to the interference from other channels or systems
and influenced by environmental factors, such as temperature.
These noise uncertainties impose fundamental limitations on
detection performance. To address this issue, the detection
threshold λ is set as

λ = Sn + η, (13)

where η is the noise uncertainty value that reflects the upper
bound for the noise power that can be reached above its
estimated value Sn. Based on the historical data on the noise
energy variation range in Fig. 4 (a), the noise uncertainty η
varies from 0 to 27 dB.

Before real-time spectrum sensing, secondary devices es-
timate the instantaneous noise variance through a learning
process and averages the history statistics to set up the
threshold. If the calculated average power of the channel of
interest exceeds the corresponding threshold, we declare that
a PU signal is present in that channel.

IV. EXPERIMENTAL RESULTS

In this section, we evaluate the proposed wideband spectrum
sensing scheme using both simulated TVWS signals as well
as real-time TVWS signals. We discuss the performance
evaluation measures we use in the comparison and we analyse
and critically discuss the obtained results.

A. Experimental Setup

Consider the incumbent PU signal that is OFDM simulated,
which is used in the DVB-T signal over TVWS. The observed
wideband signal ranges from 470 MHz to 790 MHz and has
M = 40 channels in total. Each channel is 8 MHz. The
spectrum utilization of the input signal is α and S = αM
are the channels occupied by PUs. The simulations intend
to determine each channel occupancy state, (i.e., occupied or
vacant) and to find the positions of the occupied channels.
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(a). Measurement setup at Queen 
Mary University of London

(b). RFeye sensing node

(c). Real-time TVWS signal observed by RFeye 
sensing node

Fig. 6. Measurements setup for real-time TVWS signals recording at Queen
Mary University of London.

The real-time TVWS signals are recorded by an RFeye
node, an intelligent spectrum monitoring system that can
provide real-time 24/7 monitoring of the radio spectrum [46].
To reduce the shadowing of the signal, the RFeye node is
located on the top of the Engineering building at Queen Mary
University of London (51.523021◦N 0.041592◦W). The view
from the roof of this building, whose height is about 15 meters
above ground, is unobstructed as the average clutter height of
surrounding buildings is around 10 meters, as shown in Fig. 6.
There are 40 channels (indexed as Channel 21 - Channel 60)
in the recorded TVWS signal, ranging from 470 to 790 MHz
and each channel contains either noise only or PU signal with
noise, as shown in Fig. 4 (a).

To quantify the detection performance we compute the
detection probability Pd, the fraction of occupied channels
correctly being reported as occupied; and the false alarm prob-
ability Pf , the fraction of vacant channels incorrectly being
reported as occupied. The target performance requirements for
the sensing algorithms are Pd ≥ 90% and Pf ≤ 10% [47].

For spectrum estimation speed evaluation, we compute the
runtime of the sFFT and compare it with FFT to see the
runtime reduction on different extraction ratios. We also use
the average L1 error to compare the difference between the
estimated spectrum magnitudes and the original ones for
evaluation of spectrum estimation accuracy.

B. Simulated TVWS signal: analysis

Fig. 7 shows the detection probability Pd under different ex-
traction ratios β with received SNR distributing from −20 dB
to 0 dB. The spectrum utilization ratio α is assumed to be 50%,
so 20 out of 40 channels are randomly chosen to be occupied.
We process the input signal through the proposed permutation
and filtering scheme and then implement the conventional
multiband joint detection scheme (PFMJD) based on FFT to
detect each channel occupancy state. The curves in Fig. 7 are
well matched to the theoretical results derived from (9), which
supports the theoretical analysis of the proposed permutation
and filtering design for multi-channel wideband spectrum
sensing. The extraction ratio β = 100% corresponds to the
original signal without permutation and filtering. Since the
number of samples taken on each channel Lm decreases with
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Fig. 7. Detection probability Pd vs SNR under different extraction ratio β,
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Fig. 8. Runtime of sFFT and FFT for the permuted and filtered signal under
different spectrum utilization α and extraction ratios β.

β, the detection performance is degraded in the low SNR
region, e.g., less than −5 dB.

Next, we implement sFFT to estimate the spectrum of the
permuted and filtered signal for its sub-Nyquist sampling rate
and reduced runtime. We begin by evaluating the spectrum
computation speed of the proposed wideband sensing scheme
based on sFFT. We take the conventional approach based on
FFT for comparison [48]. After feeding the input signal into
the proposed permutation and filtering algorithm, we compare
the runtime of FFT and sFFT. We fix the signal size N = 222

and vary the spectrum utilization α and extraction ratio β, thus
current signal sparsity κ′ = αβN changes correspondingly.

Through the low extraction ratio β, sFFT can compute sig-
nal spectrum with varying spectrum utilization α. Even if the
spectrum is highly occupied by PUs, i.e., high α up to 100%,
the proposed algorithm can get its spectrum occupancy state
using the sub-Nyquist sampling of sFFT based on the proposed
permutation and filtering method. As Fig. 8 shows, the runtime
of the proposed scheme based on sFFT is sublinear with the
spectrum utilization α and extraction ratio β, while the runtime
of FFT is almost constant as α or β varies. This is because
the runtime of FFT is O(N · logN), independent of the signal
sparsity. Thus, it is more efficient to implement wideband
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sensing through sFFT based on the proposed permutation and
filtering algorithm to achieve faster runtime. However, for a
given α, as extraction ratio β increases, the number of samples
taken from each channel increases. Therefore, the runtime of
sFFT exceeds FFT finally as signal sparsity κ′ increases over
sFFT sparsity bound.

Then, we evaluate the detection probability Pd the pro-
posed wideband sensing scheme based on sFFT achieved
under different SNR and Pf . We first fix the false alarm
probability Pf to 0.1 and vary the received SNR at the
SU from −20 dB to 5 dB. The spectrum utilization ratio
α is set to 10%, 20% and 50%. The extraction ratio β is
set to 0.15%, 0.20%, 0.25%, 0.3%, 0.35%. As Fig. 9 presents,
the detection probability Pd increases as received SNR and
extraction ratio β increases. For the same extraction ratio β,
the proposed wideband sensing scheme based on sFFT under
the proposed permutation and filtering scheme can detect the
TVWS signal at comparable performance to the conventional
PFMJD scheme. Moreover, the detection performance for
different spectrum utilization α is almost the same under same
extraction ratio β. This is because the detection probability
Pd is only related to the number of samples extracted on each
channel Lm = bβLc as (9) shows. Comparing the results from
Fig. 8 and Fig. 9, the detection performance of the proposed
scheme is independent of spectrum utilization α of the input

TABLE II
IMPROVEMENTS OF SFFT COMPARED WITH FFT WITH SUBSAMPLING

RATE 4.00% UNDER DIFFERENT EXTRACTION RATIO β

Extraction Ratio β Runtime Reduction L1 Error
0.15% 34.85% 0.033
0.20% 16.67% 0.032
0.25% 6.067% 0.034
0.30% -4.55% 0.032
0.35% -22.73% 0.032
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Fig. 11. Comparison of the reconstructed and original filtered signal with
extraction ratio β = 0.25%.

signal but the available range of βmax to retain faster runtime
of sFFT shrinks as α increases.

In Fig. 10, we fix the spectrum utilization α = 20% and
simulate the Receiver Operating Characteristic (ROC) curve
of the proposed wideband sensing scheme and the PFMJD
scheme. The SNR of the SU is set to be −5 dB and the
false alarm probability Pf is varied from 0.01 to 1. As
Fig. 10 shows, as the false alarm probability Pf increases,
the detection probability Pd increases as well. The experiment
result shows that the proposed wideband sensing algorithm
performs almost the same as the conventional MJD scheme
based on FFT under the same extraction ratio β.

C. Real-world TVWS signals: analysis

After the robust performance of the proposed wideband
spectrum sensing scheme has been validated with simulat-
ed DVB-T signals, we test it on real-world TVWS signals
recorded by the RFeye node installed in our lab as shown in
Fig. 6. We compare the spectrum estimation preformation of
the proposed scheme based on sFFT with the original recorded
real-world TVWS signals and analyse the impact of threshold
setting in (13) under noise uncertainty.

We implement sFFT to estimate the spectrum of the input
signal after the proposed permutation and filtering scheme.
The difference between the estimated and original spectrum
magnitude is shown with the reconstruction error of the sFFT
(the average L1 error of the amplitude estimation). Table II
shows the runtime reduction from FFT and L1 error per large
magnitude frequency estimation under different extraction
ratio β when the subsampling rate is reduced to 4% of



SUBMITTED TO IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 9

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Uncertainty (dB)

D
et

ec
ti

on
 P

ro
ba

bi
li

ty
 P

d &
 F

al
se

 A
la

rm
 P

ro
ba

bi
li

ty
 P

f

 

 

P
d
, Original Signal without Permutation and Filtering

P
d
, Original Signal without Permutation and Filtering

27

P
f

P
d

(a)

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Noise Uncertainty (dB)

D
et

ec
ti

on
 P

ro
ba

bi
lit

y 
P d &

 F
al

se
 A

la
rm

 P
ro

ba
bi

lit
y 

P f

 

 

Pd, Original Signal without Permutation and Filtering

Pd, Original Signal without Permutation and Filtering

Pd, Reconstructed Signal with ββββ=0.15%

Pf, Reconstructed Signal with ββββ=0.15%

Pd, Reconstructed Signal with ββββ=0.20%

Pf, Reconstructed Signal with ββββ=0.20%

Pd, Reconstructed Signal with ββββ=0.25%

Pf, Reconstructed Signal with ββββ=0.25%

Pd, Reconstructed Signal with ββββ=0.30%

Pf, Reconstructed Signal with ββββ=0.30%

27

P
f

P
d

Original Signal

(b)

Fig. 12. Detection probability Pd and false alarm probability Pf of (a)
the original real-world signal detection under noise uncertainty η and (b)
the reconstructed real-world signal detection with different extraction ratio β
under noise uncertainty η.

the Nyquist sampling. When extraction ratio β increases to
0.30%, the runtime of sFFT exceeds FFT as signal sparsity κ′

increases over sFFT sparsity bound.
The comparison of the estimated and the original signal

spectrum with β = 0.25% (Fig. 11) shows that the proposed
scheme based on sFFT can accurately locate the positions of
the high magnitude frequencies.

To evaluate the impact of threshold setting in (13) for the
recorded real-world TVWS signals under noise uncertainty,
we calculate the signal power in each channel and compare
it with the threshold. The noise uncertainty is varied from 0
to 27 dB, based on the historical data on the noise energy
variation range. The corresponding Pd and Pf are computed
by comparing the experimental results with the measurement
results (Fig. 12).

Fig. 12 (a) shows the detection probability Pd and false
alarm probability Pf of the original real-world signal detection
under noise uncertainty η. The signal power in each channel is
computed based on its original spectrum without permutation
and filtering and sFFT implementation. The false alarm prob-
ability Pf decreases with the increase of the noise uncertainty
η (Fig. 12 (a)), because the narrower the margin assumed
for the noise to vary over, the higher the probability that a
fluctuation in the noise only signal will be falsely interpreted as

a PU signal. As noise uncertainty increases, the floating range
of noise increases as well. The detection performance Pd is
expected to degrade with the increase of the noise uncertainty
η. Since the magnitude of real-world PU signal is higher than
the upper bound of the instantaneous noise power that can
be reached over, Pd is constant at 100% in Fig. 12 (a). The
predefined threshold should be larger than −112 dBm, i.e.,
η > 9 dB for the recorded TVWS signal to retain the target
false alarm probability Pf to be less than 10%.

We then evaluate the detection performance of the proposed
spectrum sensing scheme for the real-world signal under
different extraction ratios β. Fig. 12 (b) shows the detection
probability Pd and false alarm probability Pf for the estimated
signal spectrum based on sFFT with different extraction ratios
β. As the number of samples retained on each channel
is reduced to Lm = bβLc, the probability that the noise
fluctuation exceeds the predefined threshed will decrease with
such reduced number of samples. Therefore, when the noise
uncertainty is less than 8 dB, the reconstructed signal under
different extraction ratios achieves smaller Pf than that of the
original signal. Since signal magnitudes vary randomly in each
channel, the power of the extracted subset of the signal is
varied randomly as well, thus influencing the corresponding
detection performance. When the noise increases to 11 dB, Pf
of original signal is decreased to 0%, but Pf of reconstructed
spectrum is larger than original signal and will decrease to 0%
until η = 18 dB. As the desired requirements of Pf should
be less than 10%, the threshold setting in the original signal
(η > 9 dB) is suitable to the reconstructed spectrum under
different extraction ratio β.

V. CONCLUSION

We presented an approach for wideband spectrum sensing
over TVWS. Based on the prior information on the number
of channels and input spectrum utilization, the received signal
is pre-processed through a permutation and filtering scheme
that reduces signal sparsity to implement sFFT on wideband
spectrum sensing. As over TVWS the power spectral density
is almost flat within each channel, the extracted subset of
frequency samples near the central frequency retains the
corresponding channel occupancy state in each channel. The
proposed scheme achieves (i) sub-Nyquist wideband sensing
through permutation and filtering even when the signal is
highly occupied by PUs; (ii) faster runtime and low hardware
complexity; (iii) high spectrum estimation accuracy with the
adopted subsampling strategy to achieve considerable detec-
tion performance as the conventional MJD scheme based
on FFT at the same extraction ratio. Finally, the proposed
algorithm is further evaluated on real-world TVWS signals.

The real-world spectral data will be useful in cognitive radio
simulations and ultimately in the development of cognitive
radio systems and the regulatory regime that enables these
systems [6]. As the proposed wideband spectrum sensing
requires prior information on spectrum utilization, dynamic
signal sparsity estimation is needed before spectrum sensing.
The proposed scheme works for the spectrum with fixed
channel bandwidth and flat power spectrum density, such
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as TVWS and LTE. Our future work will address varied
bandwidth and power spectrum density, such as the detection
of unregistered PMSE users.
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