5 research outputs found

    DNA based biosensing of Acinetobacter baumannii using nanoparticles aggregation method

    No full text
    Acinetobacter baumannii is the main cause of nosocomial infections in blood, urinary tract, wounds and in lungs leading to pneumonia. Apart from its strong predilection to be the cause of serious illnesses in intensive care units. Herein, we present a specific and sensitive approach for the monitoring of Acinetobacter baumannii genome based on citrate capped silver nanoparticles (Cit-AgNPs) using spectroscopic methods. In this study, (5' SH-TTG TGA ACT ATT TAC GTC AGC ATG C3') sequence was used as a probe DNA (pDNA) of Acinetobacter baumannii. Then, complementary DNA (cDNA) was used for hybridization. After the hybridization of pDNA with cDNA, target DNA (5' GCA TGC TGA CGT AAA TAGTTC ACA A 3') was recognized and detected using turn-on fluorescence bioassay. After the hybridization of pDNA with cDNA, the target DNA was successfully measured in optimum time of 2 min by spectrophotometric techniques. Moreover, the selectivity of designed bioassay was evaluated in the presence of two mismatch sequences and excellent differentiation was obtained. 1 Zepto-molar (zM) of low limit of quantification (LLOQ) was achieved by this genosensor. The present study paved the way for quick (2 min) and accurate detection of Acinetobacter baumannii, which can be a good alternative to the traditional methods. Current study proposed a novel and significant diagnostic test towards Acinetobacter baumannii detection based on silver nanoparticles aggregation which has the capability of being a good alternative to the traditional methods. Moreover, the proposed genosensor successfully could be applied for the detection of other pathogens.Funding Agency: Tabriz University of Medical Sciences </p

    An innovative genosensor for the monitoring of Leishmania spp sequence using binding of pDNA to cDNA based on Cit-AgNPs

    No full text
    Leishmaniasis considered as the most crucial epidemic-prone diseases according to the World Health Organization. Early diagnoses and therapy of Leishmania infection is a great challenge since, it has no symptom and is resistance to drugs. Therefore, there is an urgent need for sensitive and precise detection of this pathogen. In this study, a new method was developed for optical biosensing of Leishmania spp sequence based on hybridization of Citrate capped Ag nanoparticles bonded to specific single stranded DNA probe of Leishmania spp. Aggregation of the Citrate capped Ag nanoparticles in the existence or lack of a cDNA sequence of Leishmania, cause eye catching and considerable significant alter in the UVâ\u80\u93vis. The obtained low limit of quantification (LLOQ) of was achieved as 1ZM. Based on experimental results in optimum conditions, quick bioanalysis of Leishmania spp sequence was performed (2 min). So, this probe can be used for the clinical diagnosis of this pathogen and infection disease. © 2020 The Author(s) Analytical chemistry; Nanotechnology, Nanostructure; Affinity binding; Leishmaniasis; Spectrophotometer; Spectrofluorimetric; Biosensing © 2020 The Author(s)Funding agencies:  Tabriz University of Medical Sciences</p
    corecore