23 research outputs found

    Decoupling of iron and phosphate in the global ocean

    Get PDF
    Thesis (Ph. D.)--Joint Program in Oceanography/Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, and the Woods Hole Oceanographic Institution), 2003.Includes bibliographical references (p. 132-139).Iron (Fe) is an essential micronutrient for marine phytoplankton often limiting phytoplankton growth due to its low concentration in the ocean and thus playing a role in modulating the ocean's biological pump. In order to understand controls on global Fe distribution, the decoupling between Fe and P04 and the sensitivity of surface nutrient concentrations to changes in aeolian iron supply, I use a hierarchy of ocean circulation and biogeochemistry models. I formulate a mechanistic model of iron cycling which includes scavenging onto sinking particles and complexation with an organic ligand. The iron cycle is coupled to a model of the phosphorus cycle. The aeolian source of iron is prescribed. This system is examined in the context of a highly idealized box model. With appropriate choice of parameter values, the model can be brought into consistency with the relatively sparse ocean observations of iron in the oceans. I implement this biogeochemical scheme in a coarse resolution ocean general circulation model, guided by the box model sensitivity studies. This model is also able to reproduce the broad regional patterns of iron and phosphorus. In particular, the high macro-nutrient concentrations of the Southern Oceans result from iron limitation in the model. I define a tracer, Fe* that quantifies the degree to which a water mass is iron limited. Surface waters in high nutrient, low chlorophyll regions have negative Fe* values, indicating Fe limitation, because aeolian surface dust flux is not sufficient to(cont.) compensate for the lack of iron in upwelled waters. The oceanic residence time of Fe is [approximately] 285 years in the model, confirming that transport plays an important role in controlling deep water [Fe[Tau]]. Globally, upwelling accounts for 40% of 'new' iron reaching the euphotic zone. Due to the potential ability of iron to change the efficiency of the carbon pump in the remote Southern Ocean, I study Southern Ocean surface P04 response to increased aeolian dust flux. My box model results suggest that a global ten fold increase in dust flux can support a P04 drawdown of [approximately]0.25[mu]M, while the GCM results suggest a P04 drawdown of 0.5 [mu]M.by Payal Parekh.Ph.D

    Modeling the global ocean iron cycle

    Get PDF
    Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 18 (2004): GB1002, doi:10.1029/2003GB002061.We describe a model of the ocean transport and biogeochemical cycling of iron and the subsequent control on export production and macronutrient distributions. Ocean transport of phosphorus and iron are represented by a highly idealized six-box ocean model. Export production is parameterized simply; it is limited by light, phosphate, and iron availability in the surface ocean. We prescribe the regional variations in aeolian deposition of iron and examine three parameterizations of iron cycling in the deep ocean: (1) net scavenging onto particles, the simplest model; (2) scavenging and desorption of iron to and from particles, analogous to thorium; and (3) complexation. Provided that some unknown parameter values can be set appropriately, all three biogeochemical models are capable of reproducing the broad features of the iron distribution observed in the modern ocean and explicitly lead to regions of elevated surface phosphate, particularly in the Southern Ocean. We compare the sensitivity of Southern Ocean surface macronutrient concentration to increased aeolian dust supply for each parameterization. Both scavenging-based representations respond to increasing dust supply with a drawdown of surface phosphate in an almost linear relationship. The complexation parameterization, however, asymptotes toward a limited drawdown of phosphate under the assumption that ligand production does not respond to increased dust flux. In the scavenging based models, deep water iron concentrations and, therefore, upwelled iron continually increase with greater dust supply. In contrast, the availability of complexing ligand provides an upper limit for the deep water iron concentration in the latter model.M. J. F. is grateful for funding from NOAA (NA16GP2988) and NSSF (OCE-336839). P. P. is grateful to the MIT Martin Fellowship and NASA Earth System Science Fellowship (NGT5- 30362) for funding

    How important are Southern Hemisphere wind changes for low glacial carbon dioxide? A model study

    Get PDF
    The response of atmospheric CO2 to modifications in the strength and position of Southern Hemisphere westerlies is examined with the Bern3D ocean model. The model responds more sensitively to changes in the wind amplitude than to variations in latitudinal position. Depending on the model setup, a 50% reduction in wind strength leads to a CO2 drawdown of 3–34 ppm, while a 50% increase results in a rise of 10–24 ppm. A poleward shift of 5° lowers CO2 by 2–16 ppm whereas an equatorward shift of 5° induces a CO2 increase of 2–14 ppm. Physical and biological mechanisms equally contribute to the modeled changes in atmospheric CO2. Our results are in conflict with the hypothesis that Southern Hemisphere wind changes are responsible for the low atmospheric CO2 concentrations during glacial periods

    A modeling assessment of the interplay between aeolian iron fluxes and iron-binding ligands in controlling carbon dioxide fluctuations during Antarctic warm events

    Get PDF
    We add a prognostic biogeochemical model to the Bern3D ocean circulation model to test the impact of increased aeolian iron fluxes in various regions of the ocean on long time scales. Atmospheric CO2 is most sensitive when modern dust flux is increased 100-fold in the Southern Ocean for 1000 years, resulting in a reduction of 10 ppmv. Seeding the Indian Ocean and South Pacific results in increased export production and CO2 drawdown in the Southern Ocean due to interbasinal transport of iron. The non-sea-salt calcium record from Dome C, Antarctica, is used to scale aeolian iron deposition in the Southern Ocean in transient simulations over four Antarctic warm events of the last glacial period. Our results suggest changes in dust flux to the Southern Ocean played a limited role in modulating CO2 variations. The impact of iron fluxes on CO2 is dependent on parameter values chosen for the iron-binding ligand

    A literature review on dental autopsy – an invaluable investigative technique in forensics

    Get PDF
    Forensic odontology is a specialty of dental sciences that deals with dental evidence in the interest of the justice system. The science of autopsy has been developing from the ancient times even before the popularization of general medicine. The objective of a medico-legal autopsy is to identify significant clues for an ongoing forensic investigation. However, in certain circumstances, it is difficult to conduct an oral examination owing to the anatomic location of the oral cavity. The onset of rigor mortis after death poses further complications. Thus, skillful and sequential dissections of the oral and para-oral structures are required to expose the dentition. Dental autopsy includes incisions and resection of the jaw for the detailed examination of the oral cavity. The procedure involves various modes of examination, including visual and radiographic, which help in human identification in forensic investigation. The present paper provides an overview of the various methods of dental autopsy

    (Figure 2, page 940) K-T boundary enrichment for cerium and iridium chemical composition of layers inside the ZETES-3D manganese nodule in the Pacific Ocean

    No full text
    Hydrogenous manganese nodules form on the ocean floor by slow authigenic precipitation (1-6 mm/Ma) of the oxyhydroxides of manganese and iron that continuously scavenge trace elements from the marine environment. Consequently, these nodules represent independent marine deposits useful for the study of the chemical signatures of the paleomarine environments. The results presented are a continuation of a study of the Zetes-3D nodule from the Pacific Ocean. It is a large (24x17x10 cm) hydrogenous nodule whose slow growth rate of 1.3 mm/Ma was detremined using 10Be techniques. A positive cerium anomaly is observed throughout the nodule and its Ir content indicates a sharp spike at 54-62 Ma in fair agreement with the K-T event

    COVID-19 as a Trigger of Recurrent Guillain–Barré Syndrome

    No full text
    Coronavirus 2019 (COVID-19) has been reported to trigger Guillain–Barré syndrome (GBS). While uncommon, recurrent GBS (rGBS) episodes, triggered by antecedent viral infections, have been reported in a small proportion of GBS patients, here we describe a patient with a recurrent case of GBS, occurring secondary to COVID-19 infection. Before this patient’s episode, he had two prior GBS flares, each precipitated by a viral infection followed by complete recovery besides intermittent paresthesias. We also consider the nosology of this illness in the spectrum of rGBS and Chronic Inflammatory Demyelinating Polyneuropathy (CIDP), with their differing natural histories, prognosis, and therapeutic approaches. For patients who have a history of inflammatory demyelinating polyradiculopathies who develop COVID-19, we recommend close observation for neurologic symptoms over the next days and weeks

    Parallel Gene Expression Changes in Sarcoidosis Involving the Lacrimal Gland, Orbital Tissue, or Blood

    No full text
    Sarcoidosis is a major cause of ocular or periocular inflammation. The pathogenesis of sarcoidosis is incompletely understood and diagnosis often requires a biopsy. To determine how gene expression in either orbital adipose tissue or the lacrimal gland affected by sarcoidosis compares with gene expression in other causes of orbital disease and how gene expression in tissue affected by sarcoidosis compares with gene expression in peripheral blood samples obtained from patients with sarcoidosis. In a multicenter, international, observational study, gene expression profiling of formalin-fixed biopsy specimens, using GeneChipp U133 Plus 2 microarrays (Affymetrix), was conducted between October 2012 and January 2014 on tissues biopsied from January 2000 through June 2013. Participants included 12 patients with orbital sarcoidosis (7 in adipose tissue; 5 affecting the lacrimal gland) as well as comparable tissue from 6 healthy individuals serving as controls or patients with thyroid eye disease, nonspecific orbital inflammation, or granulomatosis with polyangiitis. In addition, results were compared with gene expression in peripheral blood samples obtained from 12 historical individuals with sarcoidosis. Significantly differentially expressed transcripts defined as a minimum of a 1.5-fold increase or a comparable decrease and a false discovery rate of P < .05. Signals from 2449 probe sets (transcripts from approximately 1522 genes) were significantly increased in the orbital adipose tissue from patients with sarcoidosis. Signals from 4050 probe sets (approximately 2619 genes) were significantly decreased. Signals from 3069 probe sets (approximately 2001 genes) were significantly higher and 3320 (approximately 2283 genes) were significantly lower in the lacrimal gland for patients with sarcoidosis. Ninety-two probe sets (approximately 69 genes) had significantly elevated signals and 67 probe sets (approximately 56 genes) had significantly lower signals in both orbital tissues and in peripheral blood from patients with sarcoidosis. The transcription factors, interferon-response factor 1, interferon-response factor 2, and nuclear factor κB, were strongly implicated in the expression of messenger RNA upregulated in common in the 3 tissues. Gene expression in sarcoidosis involving the orbit or lacrimal gland can be distinguished from gene expression patterns in control tissue and overlaps with many transcripts upregulated or downregulated in the peripheral blood of patients with sarcoidosis. These observations suggest that common pathogenic mechanisms contribute to sarcoidosis in different sites. The observations support the hypothesis that a pattern of gene expression profiles could provide diagnostic information in patients with sarcoidosis

    The Role of the Immune Response in the Pathogenesis of Thyroid Eye Disease: A Reassessment.

    No full text
    Although thyroid eye disease is a common complication of Graves' disease, the pathogenesis of the orbital disease is poorly understood. Most authorities implicate the immune response as an important causal factor. We sought to clarify pathogenesis by using gene expression microarray.An international consortium of ocular pathologists and orbital surgeons contributed formalin fixed orbital biopsies. RNA was extracted from orbital tissue from 20 healthy controls, 25 patients with thyroid eye disease (TED), 25 patients with nonspecific orbital inflammation (NSOI), 7 patients with sarcoidosis and 6 patients with granulomatosis with polyangiitis (GPA). Tissue was divided into a discovery set and a validation set. Gene expression was quantified using Affymetrix U133 Plus 2.0 microarrays which include 54,000 probe sets.Principal component analysis showed that gene expression from tissue from patients with TED more closely resembled gene expression from healthy control tissue in comparison to gene expression characteristic of sarcoidosis, NSOI, or granulomatosis with polyangiitis. Unsupervised cluster dendrograms further indicated the similarity between TED and healthy controls. Heat maps based on gene expression for cytokines, chemokines, or their receptors showed that these inflammatory markers were associated with NSOI, sarcoidosis, or GPA much more frequently than with TED.This is the first study to compare gene expression in TED to gene expression associated with other causes of exophthalmos. The juxtaposition shows that inflammatory markers are far less characteristic of TED relative to other orbital inflammatory diseases
    corecore