133 research outputs found

    Atomic structure of grain boundaries in iron modeled using the atomic density function

    Full text link
    A model based on the continuous atomic density function (ADF) approach is applied to predict the atomic structure of grain boundaries (GBs) in iron. Symmetrical [100] and [110] tilt GBs in bcc iron are modeled with the ADF method and relaxed afterwards in molecular dynamics (MD) simulations. The shape of the GB energy curve obtained in the ADF model reproduces well the peculiarities of the angles of 70.53 deg. [Σ\Sigma 3(112)] and 129.52 deg. [Σ\Sigma 11(332)] for [110] tilt GBs. The results of MD relaxation with an embedded-atom method potential for iron confirm that the atomic GB configurations obtained in ADF modeling are very close to equilibrium ones. The developed model provides well-localized atomic positions for GBs of various geometries.Comment: 8 pages, 8 figures, revised versio

    Atomic scale observation of phase separation and formation of silicon clusters in Hf higk-κ silicates

    Get PDF
    International audienceHafnium silicate films were fabricated by RF reactive magnetron sputtering technique. Fine microstructural analyses of the films were performed by means of high-resolution transmission electron microscopy and atom probe tomography. A thermal treatment of as-grown homogeneous films leads to a phase separation process. The formation of SiO2 and HfO2 phases as well as pure Si one was revealed. This latter was found to be amorphous Si nanoclusters, distributed uniformly in the film volume. Their mean diameter and density were estimated to be about 2.8 nm and (2.960.4) 1017 Si-ncs/cm3, respectively. The mechanism of the decomposition process was proposed. The obtained results pave the way for future microelectronic and photonic applications of Hf-based high-j dielectrics with embedded Si nanocluster

    Atomic scale investigation of silicon nanowires and nanoclusters

    Get PDF
    In this study, we have performed nanoscale characterization of Si-clusters and Si-nanowires with a laser-assisted tomographic atom probe. Intrinsic and p-type silicon nanowires (SiNWs) are elaborated by chemical vapor deposition method using gold as catalyst, silane as silicon precursor, and diborane as dopant reactant. The concentration and distribution of impurity (gold) and dopant (boron) in SiNW are investigated and discussed. Silicon nanoclusters are produced by thermal annealing of silicon-rich silicon oxide and silica multilayers. In this process, atom probe tomography (APT) provides accurate information on the silicon nanoparticles and the chemistry of the nanolayers

    Atomic characterization of Si nanoclusters embedded in SiO2 by atom probe tomography

    Get PDF
    Silicon nanoclusters are of prime interest for new generation of optoelectronic and microelectronics components. Physical properties (light emission, carrier storage...) of systems using such nanoclusters are strongly dependent on nanostructural characteristics. These characteristics (size, composition, distribution, and interface nature) are until now obtained using conventional high-resolution analytic methods, such as high-resolution transmission electron microscopy, EFTEM, or EELS. In this article, a complementary technique, the atom probe tomography, was used for studying a multilayer (ML) system containing silicon clusters. Such a technique and its analysis give information on the structure at the atomic level and allow obtaining complementary information with respect to other techniques. A description of the different steps for such analysis: sample preparation, atom probe analysis, and data treatment are detailed. An atomic scale description of the Si nanoclusters/SiO2 ML will be fully described. This system is composed of 3.8-nm-thick SiO layers and 4-nm-thick SiO2 layers annealed 1 h at 900°C

    Multiscale modelling for fusion and fission materials: the M4F project

    Get PDF
    The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and its effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin and consequences of localised deformation under irradiation in F/M steels; (2) To develop good practices and possibly advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science.This work has received funding from the Euratom research and training programme 2014-2018 under grant agreement No. 755039 (M4F project)

    Modeling Microstructure and Irradiation Effects

    Full text link

    Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe–Cr alloys – Comparison to neutron irradiation

    No full text
    International audienceThis paper presents an atom probe tomography study of phase transformation and solute segregation in Fe-Cr alloys of low purity under self-ion irradiation. Fe-9%Cr and Fe-12%Cr were irradiated at 100 °C, 300 °C and 420 °C at a dose of 0.5 dpa. Homogeneously distributed clusters enriched in Cr, P, Si and Ni are shown to form at 300 °C and 420 °C but not at 100 °C. Study of the evolution of the segregation intensities of Cr, Si and P in the clusters with temperature under ion irradiation indicates that they form by a radiation induced mechanism. No a 0 clusters were observed whatever the irradiation temperature whereas they were observed in the same alloys after neutron irradiation at 300 °C at 0.6 dpa. Comparison of the solute cluster composition after ion irradiation and neutron irradiation, suggests that P atoms could play an important role in the appearance of the solute clusters by stabilizing point defect clusters that could later be enriched in Ni, Si and Cr

    Behaviour of P, Si, Ni impurities and Cr in self ion irradiated Fe–Cr alloys – Comparison to neutron irradiation

    No full text
    International audienceThis paper presents an atom probe tomography study of phase transformation and solute segregation in Fe-Cr alloys of low purity under self-ion irradiation. Fe-9%Cr and Fe-12%Cr were irradiated at 100 °C, 300 °C and 420 °C at a dose of 0.5 dpa. Homogeneously distributed clusters enriched in Cr, P, Si and Ni are shown to form at 300 °C and 420 °C but not at 100 °C. Study of the evolution of the segregation intensities of Cr, Si and P in the clusters with temperature under ion irradiation indicates that they form by a radiation induced mechanism. No a 0 clusters were observed whatever the irradiation temperature whereas they were observed in the same alloys after neutron irradiation at 300 °C at 0.6 dpa. Comparison of the solute cluster composition after ion irradiation and neutron irradiation, suggests that P atoms could play an important role in the appearance of the solute clusters by stabilizing point defect clusters that could later be enriched in Ni, Si and Cr
    corecore