research

Atomic structure of grain boundaries in iron modeled using the atomic density function

Abstract

A model based on the continuous atomic density function (ADF) approach is applied to predict the atomic structure of grain boundaries (GBs) in iron. Symmetrical [100] and [110] tilt GBs in bcc iron are modeled with the ADF method and relaxed afterwards in molecular dynamics (MD) simulations. The shape of the GB energy curve obtained in the ADF model reproduces well the peculiarities of the angles of 70.53 deg. [Σ\Sigma 3(112)] and 129.52 deg. [Σ\Sigma 11(332)] for [110] tilt GBs. The results of MD relaxation with an embedded-atom method potential for iron confirm that the atomic GB configurations obtained in ADF modeling are very close to equilibrium ones. The developed model provides well-localized atomic positions for GBs of various geometries.Comment: 8 pages, 8 figures, revised versio

    Similar works