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Hafnium silicate films were fabricated by RF reactive magnetron sputtering technique. Fine

microstructural analyses of the films were performed by means of high-resolution transmission

electron microscopy and atom probe tomography. A thermal treatment of as-grown homogeneous

films leads to a phase separation process. The formation of SiO2 and HfO2 phases as well as pure

Si one was revealed. This latter was found to be amorphous Si nanoclusters, distributed uniformly

in the film volume. Their mean diameter and density were estimated to be about 2.8 nm and

(2.9 6 0.4)� 1017 Si-ncs/cm3, respectively. The mechanism of the decomposition process was

proposed. The obtained results pave the way for future microelectronic and photonic applications

of Hf-based high-j dielectrics with embedded Si nanoclusters. VC 2012 American Institute of
Physics. [http://dx.doi.org/10.1063/1.4718440]

I. INTRODUCTION

Continuous downscaling of the complementary metal-

oxide semiconductor technology has evidenced the limita-

tions of the silicon oxide gate dielectrics for thickness lower

than 0.7 nm.1,2 To overcome this limit, alternative high-j
materials have been proposed. Among them, zirconium and

hafnium oxides, as well as their silicates are considered as

the best candidates to replace SiO2.3,4 Besides a high dielec-

tric constant, the advantages of these materials are their ther-

mal and chemical stabilities, and good interfacial quality

with Si channel.3,5–7 Widespread applications of high-j
materials are linked with the floating gate non-volatile

memory devices containing semiconductor and/or metallic

nanocrystals (NCs) or amorphous nanoclusters (ncs).8,9 Their

controlled precipitation in high-j oxide host is a major chal-

lenge for such devices.

Among semiconductor NCs (or ncs), silicon and/or germa-

nium ones are the most addressed. Their formation usually

results from a two-step process. Initially, silicon (or germa-

nium) is incorporated into high-j host. For this purpose, differ-

ent techniques are used, for instance, Si(Ge) ion implantation10

or deposition of thin Si(Ge)-based layer sandwiched between

the high-j layers.11,12 After this step, a specific annealing treat-

ment is carried out to form NCs (or ncs) inside high-j
host.10–12 It is worth to note that up to now neither Si-NCs nor

Si-ncs formation in Hf-silicate host was demonstrated. To

explain this fact, one can refer to a Hf-Si-O phase diagram.13–17

This pseudo-binary alloy can be accounted for a mixture of

HfO2 and SiO2 unit cells such as (HfO2)x(SiO2)1�x.
13 They

present a miscibility gap in the range of composition consid-

ered. This can lead to a phase separation process either during

fabrication or post-fabrication processing. It results, usually, in

the formation of HfO2 and SiO2 phases.16,17 Meanwhile, to our

knowledge, no information was obtained about decomposition

process for films as (HfO2)x(SiO2)y with xþ y 6¼ 1. As evoked

previously, the formation of Si- or Ge-NCs (or ncs) requires an

annealing treatment at 900-1100 �C.10,18,25 If these NCs

(or ncs) have to be grown in the Hf-silicate matrix, the thermal

behaviour of this latter element has to be taking into

account.5,14,15,20

In this paper, we present a specific approach developed

to fabricate Hf-silicate dielectrics with embedded Si-ncs.

The films were grown by reactive RF magnetron sputtering,

yielding on a fine control of their chemical composition. An

annealing treatment was used to form Si-ncs. A combina-

tion of high-resolution transmission electron microscopy

(HRTEM) and atom probe tomography (APT) techniques

allowed to study the film microstructure at atomic scale

level and to obtain information about a phase separation

process and Si-ncs formation.

II. EXPERIMENTAL

A. Fabrication of Hf-silicate samples

For this study, a 230-nm HfSiO film was deposited on p-

type (100) Si substrate cleaned in 10% HF solution to

remove native silicon oxide. The RF magnetron co-

sputtering of a 4-in. HfO2 target (99.9%) topped by Si chips

placed on the electron “race track” was used. The films were

fabricated under a RF power density of 0.74 W/cm2 and a

substrate temperature of 400 �C in mixed argon-hydrogen

plasma (with hydrogen flow rate of 20%). The total plasma

pressure was kept at 40 lbar. The hydrogen was used due to

its ability to remove the oxygen from plasma and, in conse-

quence, to reach higher Si excess in the films. More details

on the reactive fabrication process can be found else-

where.19,20 An annealing treatment of the sample wasa)Electronic mail: etienne.talbot@univ-rouen.fr.
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performed in a conventional furnace at 950 �C during 15 min

in a nitrogen flow.

B. Methods used for structure analysis

Several techniques were used to study the structural prop-

erties of the samples. X-ray diffraction analysis was per-

formed using a Phillips XPERT HPD Pro device with Cu Ka

radiation (k¼ 0.1514 nm) at a fixed grazing angle incidence

of 0.5�. An asymmetric grazing geometry was chosen to

increase the volume of material interacting with x-ray beam,

as well as to eliminate the contribution from the Si substrate.

attenuated total reflectance (ATR)-FTIR spectra were

measured in the 600-4000 cm�1 spectral range by means of a

60� Ge Smart Ark accessory inserted in a Nicolet Nexus spec-

trometer to study the chemical composition and microstruc-

ture of the samples. For atomic scale analysis of samples,

APT and HRTEM were used. For this latter, the cross-

sectional specimens were prepared by a standard lift-out TEM

lamella procedure. Z-contrast high angle annular dark field

(HAADF), scanning transmission electron microscopy

(STEM), electron energy loss spectroscopy (EELS), and

HRTEM experiments have been performed by means of a

JEOL-ARM200F working at 200 kV. APT techniques allow a

chemical mapping of materials in three dimensions, in the real

space with an atomic resolution.21–23 Laser assisted APT has

been recently used to study insulating materials.24–26 It pro-

vides a better understanding of material nanostructure, allow-

ing to quantify a phase separation process and to evidence

clustering effects. To investigate Hf-silicate layer by this

technique, tip shaped specimens were prepared by means of

a dual-beam FIB-SEM (Zeiss NVision 40), using lift out

method and an annular milling procedure.27,28 To prevent Ga

implantation and ion beam amorphization, the samples were

beforehand capped with a Pt layer. APT analyses were carried

out in a laser assisted wide angle atom probe tomography

(LAWATAP) from CAMECA. The experiments were carried

out at 80 K, using UV (343 nm) femtosecond laser pulses

(50 nJ, 350 fs) with a pulse rate of 100 kHz.

III. RESULTS

A. As-grown HfSiO layers

Structural properties of the sample, examined by x-ray dif-

fraction and ATR-FTIR spectroscopy, showed the homogene-

ous and amorphous nature of the as-grown sample.5,20 These

results were confirmed by HRTEM observations (Figure 1).

The observed bright contrast at the film/substrate interface

evidenced the formation of a thin interfacial HfSiOx layer

(not thicker than 1 nm), as already shown for similar films by

Khomenkova et al.5,20

B. TEM observation of annealed HfSiO layers

Figure 2 shows a cross-sectional HRTEM image of the

HfSiO layers annealed at 950 �C for 15 min in nitrogen flow.

The bright and dark contrasts on HRTEM micrograph (see

arrows) are associated with the formation of Si-rich and Hf-

rich phases due to the phase separation process in the HfSiO

layer. The Hf-rich phase appears here to be crystallized,

which is consistent with previous study on the amorphous-

crystalline transition on thick HfSiO layers.5 Thus, the detri-

mental role of thermal treatment resulting in the phase sepa-

ration and formation of Hf-rich and Si-rich phases is clearly

seen, as predicted by the phase diagram. Similar phase sepa-

ration was already evidenced in the literature.5,16,29

Besides this phase separation in the film volume, the for-

mation of two thin interfacial layers (IL) was observed. Based

on their contrast, we can expect that the first IL (bright con-

trast, Si-IL, �2-nm) contains a lower amount of Hf than the

second one (dark contrast, Hf-IL, �3-nm). To deeply investi-

gate the nature of the phases formed as well as the origin of

interface layer between HfSiO film and Si substrate, the analy-

sis of the same sample by APT technique was performed.

C. APT analysis of HfSiO layers

A key point for high-j Hf-based microelectronic devices

is the nature of film/substrate interface. The results of APT

FIG. 1. Cross sectional HRTEM image of the as-grown HfSiO layer. Thin

bright region close to substrate is HfSiOx interfacial layer.

FIG. 2. Cross sectional HRTEM micrograph in [110] zone axis of the Si

substrate. Si-IL denotes thin Si-rich layer at the interface with the silicon

substrate, Hf-IL denotes Hf-rich interfacial layer followed Si-rich one. The

arrows show the bright and dark regions, corresponding to Si-rich and

Hf-rich phases formed in the film volume. The crystalline sequences are

seen in the dark regions.

103519-2 Talbot et al. J. Appl. Phys. 111, 103519 (2012)
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experiments on the interface between HfSiO film and under-

lying Si substrate are shown in Fig. 3. A 3D reconstruction

image of this interface region is displayed by Fig. 3(a). On

this image, the hafnium and silicon atoms are presented by

blue and red dots, respectively. The oxygen atoms are not

shown here for clarity. The region I corresponds to the

HfSiO film that is separated by the interface layer (IL, region

II) from the Si substrate (region III). At film/substrate inter-

face (region II), the higher number of Hf atoms (blue dots) is

found close to the HfSiO film (region I), whereas an enrich-

ment in Si atoms (red dots) is clearly seen close to Si sub-

strate (region III). Thus, this APT experiment confirms the

formation of Si-rich IL layer followed by a Hf-rich one in

the interface region. These results are consistent with the

HRTEM observations described above.

Figure 3(b) represents the concentration profile for Si,

O, and Hf (in at. %) to the surface of the film towards the

substrate. It has been calculated by counting the atoms of

each species in a sampling volume of 25� 25� 1 nm3 paral-

lel to the interface. The Si, O, and Hf content were found to

be the same for different sampling volumes, chosen in the

region I (Fig. 3(b), depth before 15 nm). The calculations

showed that XSi ¼ 30:660:3 at. %, XO ¼ 61:560:3 at. %,

and XHf ¼ 7:960:3 at. % over all film volume.

The region II (depth between 16 and 21 nm) shows also

a mixture of Si-rich and Hf-rich phases. However, it is not

homogeneous and contains two layers. The first one is

enriched in hafnium (depth between 16 and 19 nm) with the

concentration of about 13 at. % contrary to 7.9 at. %

observed for the film volume. The second layer (depth

between 19 and 21 nm) has higher Si content and its compo-

sition is close to SiO2. The thicknesses of Hf-rich and SiO2

layers were estimated to be �3 nm and �2 nm, respectively,

that is in a good agreement with HRTEM results (Fig. 2).

The region III corresponds to the silicon substrate.

Figure 4 shows more detailed 3D chemical maps of a

volume of the HfSiO film (region I), reconstructed after APT

experiment, in which each dot represents one atom. For

clarity, only 10% of Si and O atoms is shown in these maps.

The analysis of the distribution of Si and Hf atoms demon-

strates the presence of three different phases: (1) enriched in

Hf (black arrow on Hf map), (2) depleted by Hf (white arrow

on Hf map) as well as (3) enriched in Si (black arrow on Si

map). Thus, it is clearly seen a phase separation process in

the film volume, caused by high-temperature annealing. This

is in agreement with HRTEM observation (Fig. 2).

In order to describe the spatial distributions of these

phases, isoconcentration maps of silicon and hafnium atoms

were calculated and are presented in Fig. 5. These filtered

images show the three-phases system, where each phase is

labelled as a (silica), b (pure Si), and c (hafnia). Local con-

centrations of Si, O, and Hf have been measured in each

region and reported in Table I.

It is worth to note that atom probe measurements of the

composition of nanometric clusters or small fluctuation area

can be a difficult task due to artefacts generated by the differ-

ence in fields of evaporation between Si-ncs, Hafnia, and

Silica. Indeed, this effect, already evidenced in similar

FIG. 3. APT reconstruction of the HfSiO-film/Si-substrate volume

(25� 25� 50 nm3) analysed by LAWATAP. (a) Hafnium atom maps (blue

dot) and silicon isoconcentration surface (red zones, Si> 60 at.%). (b) Si, O,

and Hf concentration profile (in at.%) along the growth direction.

FIG. 4. 3D chemical maps of silicon (red), oxygen (green), and hafnium

(blue) in a volume of 28� 28� 80 nm3. Hf-rich and Si-rich phases are indi-

cated by black arrow and Hf-poor one with white arrow.

103519-3 Talbot et al. J. Appl. Phys. 111, 103519 (2012)
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materials,24,25 can introduce a bias for direct composition

measurements. In our case, the concentration of Si-ncs,

SiO2-rich, and HfO2-rich zones was corrected, applying the

procedure developed by Talbot et al.24 Based on 3D chemi-

cal maps (Fig. 4) and isoconcentration maps (Fig. 5), we

identified a thin (<1-2 nm) layer between the different

phases (SiO2, HfO2, and Si-ncs). It consists of Hf-Si-O dem-

onstrating that the phase separation is not complete.

The diameter of individual Si-ncs was calculated by

counting the number of Si atoms in each nanocluster. This

latter was supposed to have a spherical shape. A dispersion

in the size distribution (from 1 nm to 6.5 nm) is observed

with a mean gyration diameter of about 2.8 nm. Taking into

account the dimensions of the analysed volume, the Si-ncs

density was estimated to be (2.9 6 0.4)� 1017 Si-ncs/cm3.

D. HAADF-STEM and EELS study of the annealed
samples

Phase separation in a mixture of Hf-rich and Si-rich

phases in the Hf-Si-O layer was confirmed by a combined

HAADF-STEM and EELS experiments. The corresponding

HAADF images (sensitive to the Z-contrast) and EELS spectra

(sensitive to local chemical composition) for HfSiO films are

presented, respectively, on Fig. 6(a) and Figs. 6(b) and 6(c).

The HAADF-STEM image exhibits high-Z (bright) and

low-Z (dark) contrast, identified as HfO2-rich (ZHf¼ 72 and

ZO¼ 8) and SiO2-rich (ZSi¼ 14) phases, respectively (Fig.

6(a)). This result has been confirmed by local EELS spectra

performed on each contrasted zones. Both contrasted zones

(Fig. 6(a)) contain oxygen (Fig. 6(b)), whereas bright and

dark zones are hafnium and silicon rich regions, respectively

(Fig. 6(c)). Moreover, O-K edge of HfO2-rich zones exhibits

a low energy-loss shift compared to that of SiO2-rich ones,

confirming the chemical difference between dark and bright

zones. Such a result is in good agreement with a recent work

of Agustin et al.30

IV. DISCUSSION

Let’s start the discussion by thermodynamic considera-

tions of the Hf-silicate material. Dealing with thermodynamic

equilibrium and Gibbs free energy of bulk HfO2 and SiO2

phases (respectively, G0
f ðHfO2Þ ¼ �1238:7 kJ=mol and

G0
f ðSiO2Þ ¼ �981 kJ=mol), HfO2 phase is expected to be sta-

ble on silicon substrate without Hf silicide formation. How-

ever, several groups have reported about the formation of

interfacial silicon oxide layer, when HfO2 film is in direct con-

tact with Si substrate. The similar effect is shown in this pa-

per. It was clearly demonstrated in Ref. 6 that the formation

of this SiO2-IL is initiated by different diffusion processes.

Among them, the most probable is oxygen out-diffusion from

high-j regions close to the Si substrate towards the Si sub-

strate surface. This can explain the appearance of coupled

SiO2rich and HfO2-rich layers following each other during an

annealing.

Locquet et al.31 have demonstrated the stability of such a

layer introducing Gibbs free energy of an interfacial silicon ox-

ide phase in the thermodynamic equations. Nevertheless, forma-

tion and stability of the SiO2-IL do not explain the origin of the

observed continuous Hf-rich layer parallel to the substrate. This

leads to an assumption of another decomposition mechanism.

The thermodynamic analysis of thermal behaviour of bulk

high-j silicates was performed by Kim and McIntyre.29

The silicates were considered as a supercooled liquid for

typical transistor processing temperatures (600-1000 �C).

The trend for the spinodal decomposition at lower tempera-

tures is caused by negative Gibbs free energy of the sili-

cates. Thus, a driving force for the decomposition process

exists for initially homogeneous silicates and results in the

formation of SiO2-rich phase (that contains more than

98 mol. % of SiO2) and high-j-rich (consists of more than

20 mol. % of high-j oxide phase) upon annealing. This phe-

nomenon was found to be the main decomposition mecha-

nism for the silicates with 40-90 mol. % of SiO2 content.

The consideration of the kinetics of this process revealed

the presence of longitudinal composition waves in the bulk

FIG. 5. Isoconcentration maps of silicon

atoms (a); oxygen atoms (b), and haf-

nium atoms (c) in a selected volume

(5� 40� 50 nm3). Different chemical

zones, labelled as a (silica), b (pure Si-

nc), and c (hafnia) are detected. Pure Si

nanoclusters are highlighted with dash-

circle.

TABLE I. Atomic concentration of Si, O, and Hf atoms in different regions

labelled a, b, and c on Fig. 5.

Label XSi (at. %) XO (at. %) XHf (at. %) Phase

a 32.5 6 0.2 66.2 6 0.2 1.3 6 0.2 SiO2

B 98.8 6 0.2 1.2 6 0.2 0.0 Si

C 0.0 68.2 6 0.2 31.8 6 0.2 HfO2

103519-4 Talbot et al. J. Appl. Phys. 111, 103519 (2012)
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silicate. Meanwhile, for the film approach, this wave forms

in the growth direction due to an effect of Si-subtrate/film

interface. Consequently, formation of a layer structure,

where SiO2-rich phase is alternated by high-j-rich phase

parallel to Si subtrate, occurs. It was shown that the silicate

composition controls the number of these alternated layers

(at other constant annealing parameters) and for the case of

more than 50 mol. % of SiO2 content in high-j silicate

films, only one SiO2 layer appeared at Si substrate surface

followed by one high-j-oxide-rich layer. As one can see

from Fig. 2, these coupled layers are observed in our case.

This is an evidence that interface-directed spinodal decom-

position plays the main role in the structure evolution of

samples investigated in this work. The similar formation of

coupled SiO2-rich and HfO2-rich continuous layers due to

spinodal decomposition mechanism of the film upon an

annealing treatment was also observed in Refs. 5, 14, and

15. Meanwhile, any formation of Si-NCs (or ncs) was not

evidenced in those works. In the present work, Si-ncs are

imaged for the first time, despite that, this was not predicted

by the model proposed by Kim and McIntyre.29

As one can see from Fig. 2, the annealing step at 950 �C
during 15 min leads to the formation of a dual mixture of SiO2

and HfO2 phases as well as Si-ncs in the volume of silicate

films, which is confirmed by the analysis of APT results. The

formation of Si-ncs in the films investigated can be explained

in the next way. Upon HfSiO film annealing, the formation of

HfO2 phase is preferable due to ionic nature of Hf-O bonds.

As-grown films have a composition as Hf0.07Si0.33O0.60.

Assuming that upon an annealing all Hf atoms are “catched”

by HfO2 phase, then non-stoichiometric SiOx phase (with O/Si

ratio of about 1.4) is formed instead of stoichiometric SiO2.

Consequently, the formation of Si-ncs can occur due to decom-

position of the SiOx phase, similar to that observed for Si-rich-

SiO2 materials.9,19 It is worth to note that for HfSiO materials

with about 20 at. % of Hf content, the formation of HfO2-rich

and SiO2-rich phases occurred only upon post-deposition

processing.5,15 No evidence of Si-ncs was reported in these

works,5,15 confirming the effect of the Hf content in the film

on the Si-ncs formation.

In the present work no crystalline plane sequences,

which could correspond to Si-NCs, have been observed by

HRTEM experiments. Moreover, either EFTEM or STEM-

EELS did not reveal their presence. This could be due to low

density, small size as well as amorphous nature of these Si-

ncs. To go further in the conclusion and limits of EFTEM

techniques to detect such clusters, additional experiments in

the low energy-loss domain should be performed. On the

contrary to TEM technique, APT showed that our sample

contains about (2.9 6 0.4)� 1017 Si-ncs/cm3. Thus, one can

conclude that Si nanoclusters are mainly amorphous, which

could be expected due to the annealing conditions.

V. CONCLUSION

In summary, new deposition approach has been proposed

for the fabrication of HfSiO layers with specific composition.

They have been characterized at the atomic scale by atom

probe tomography and transmission electron microscopy.

The information about decomposition of (HfO2)x(SiO2)y

(xþ y= 1) was obtained. A phase separation process in these

materials occurs through the formation of HfO2, SiO2, and Si

phases. The appearance of the last one depends strongly on

the film composition and is possible for Hf-silicates with

lower Hf content. The formation of Si-ncs in such films evi-

dences the capability of magnetron sputtering technique for

the production of future Si-rich-high-j materials, paving way

for nanomemory applications. The results also demonstrate

that APT and TEM are complementary techniques for atomic

FIG. 6. Cross sectional HAADF-STEM

image showing Hf-rich zones (bright con-

trast) and Hf-poor zones (dark contrast).

EELS spectra obtained on bright and dark

zones of the HAADF image for (b) O-K

edge and (c) Hf-M4,5 and Si-K edges.
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scale investigation of clustering and structural characterisation

in higk-j materials.
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