27 research outputs found

    The pleiotropic mutation dar1 affects plant architecture in Arabidopsis thaliana

    Get PDF
    AbstractShoot architecture is shaped upon the organogenic activity of the shoot apical meristem (SAM). Such an activity relies on the balance between the maintenance of a population of undifferentiated cells in the centre of the SAM and the recruitment of organ founder cells at the periphery. A novel mutation in Arabidopsis thaliana, distorted architecture1 (dar1), is characterised by disturbed phyllotaxy of the inflorescence and consumption of the apical meristem late in development. SEM and light microscopy analyses of the dar1 SAM reveal an abnormal partitioning of meristematic domains, and mutations known to affect the SAM structure and function were found to interact with dar1. Moreover, the mutant shows an alteration of the root apical meristem (RAM) structure. Those observations support the hypothesis that DAR1 has a role in meristem maintenance and it is required for the normal development of Arabidopsis inflorescence during plant life

    Hyperoxemia and excess oxygen use in early acute respiratory distress syndrome : Insights from the LUNG SAFE study

    Get PDF
    Publisher Copyright: © 2020 The Author(s). Copyright: Copyright 2020 Elsevier B.V., All rights reserved.Background: Concerns exist regarding the prevalence and impact of unnecessary oxygen use in patients with acute respiratory distress syndrome (ARDS). We examined this issue in patients with ARDS enrolled in the Large observational study to UNderstand the Global impact of Severe Acute respiratory FailurE (LUNG SAFE) study. Methods: In this secondary analysis of the LUNG SAFE study, we wished to determine the prevalence and the outcomes associated with hyperoxemia on day 1, sustained hyperoxemia, and excessive oxygen use in patients with early ARDS. Patients who fulfilled criteria of ARDS on day 1 and day 2 of acute hypoxemic respiratory failure were categorized based on the presence of hyperoxemia (PaO2 > 100 mmHg) on day 1, sustained (i.e., present on day 1 and day 2) hyperoxemia, or excessive oxygen use (FIO2 ≥ 0.60 during hyperoxemia). Results: Of 2005 patients that met the inclusion criteria, 131 (6.5%) were hypoxemic (PaO2 < 55 mmHg), 607 (30%) had hyperoxemia on day 1, and 250 (12%) had sustained hyperoxemia. Excess FIO2 use occurred in 400 (66%) out of 607 patients with hyperoxemia. Excess FIO2 use decreased from day 1 to day 2 of ARDS, with most hyperoxemic patients on day 2 receiving relatively low FIO2. Multivariate analyses found no independent relationship between day 1 hyperoxemia, sustained hyperoxemia, or excess FIO2 use and adverse clinical outcomes. Mortality was 42% in patients with excess FIO2 use, compared to 39% in a propensity-matched sample of normoxemic (PaO2 55-100 mmHg) patients (P = 0.47). Conclusions: Hyperoxemia and excess oxygen use are both prevalent in early ARDS but are most often non-sustained. No relationship was found between hyperoxemia or excessive oxygen use and patient outcome in this cohort. Trial registration: LUNG-SAFE is registered with ClinicalTrials.gov, NCT02010073publishersversionPeer reviewe

    Meristem Maintenance in Arabidopsis thaliana

    No full text
    The shoot apical meristem (SAM) is the structure that shapes the aerial architecture of the plant, by producing lateral organs throughout development. In the model plant Arabidopsis thaliana, the SAM is always identifiable as a characteristic dome, whether it is found in the centre of a rosette of leaves or at the tip of an inflorescence. When senescence occurs and organogenesis ceases, the now inactive SAM still retains its characteristic appearance and it is never consumed into a terminal structure, such as a flower. Mutant plants that undergo termination represent a valuable tool to understand how the SAM structure and function are maintained during plant life. The aim of this work was to investigate the dynamics of meristem development through morphological and genetic studies of three Arabidopsis mutants that exhibit distinct modes of SAM termination: distorted architecture 1 (dar1), adenosine kinase 1 (adk1) and terminal flower 2 (tfl2). The dar1 mutation is characterised by a severely distorted cellular architecture within the SAM. We propose that dar1 affects the pattern of cell differentiation and/or cell proliferation within the SAM apical dome, resulting in termination by meristem consumption. Instead, the adk1 mutation affects the organogenic potential of the SAM, without altering its structure. The adk1 mutant has increased levels of cytokinins and, as a consequence of this, cell division is enhanced and cell differentiation is prevented in the apex, causing termination by meristem arrest. Finally, tfl2 is mutated in the conserved chromatin remodelling factor HP1, a transcriptional repressor with multiple roles during plant development. The tfl2 SAM terminates by conversion into a floral structure, due to de-repression of floral identity genes. Interestingly, tfl2 mutants also show an altered response to light, an indication that TFL2 might act as a repressor also in the context of light signalling

    Meristem Maintenance in Arabidopsis thaliana

    No full text
    The shoot apical meristem (SAM) is the structure that shapes the aerial architecture of the plant, by producing lateral organs throughout development. In the model plant Arabidopsis thaliana, the SAM is always identifiable as a characteristic dome, whether it is found in the centre of a rosette of leaves or at the tip of an inflorescence. When senescence occurs and organogenesis ceases, the now inactive SAM still retains its characteristic appearance and it is never consumed into a terminal structure, such as a flower. Mutant plants that undergo termination represent a valuable tool to understand how the SAM structure and function are maintained during plant life. The aim of this work was to investigate the dynamics of meristem development through morphological and genetic studies of three Arabidopsis mutants that exhibit distinct modes of SAM termination: distorted architecture 1 (dar1), adenosine kinase 1 (adk1) and terminal flower 2 (tfl2). The dar1 mutation is characterised by a severely distorted cellular architecture within the SAM. We propose that dar1 affects the pattern of cell differentiation and/or cell proliferation within the SAM apical dome, resulting in termination by meristem consumption. Instead, the adk1 mutation affects the organogenic potential of the SAM, without altering its structure. The adk1 mutant has increased levels of cytokinins and, as a consequence of this, cell division is enhanced and cell differentiation is prevented in the apex, causing termination by meristem arrest. Finally, tfl2 is mutated in the conserved chromatin remodelling factor HP1, a transcriptional repressor with multiple roles during plant development. The tfl2 SAM terminates by conversion into a floral structure, due to de-repression of floral identity genes. Interestingly, tfl2 mutants also show an altered response to light, an indication that TFL2 might act as a repressor also in the context of light signalling

    The dehydratase ADT3 affects ROS homeostasis and cotyledon development

    No full text
    During the transition from seed to seedling, emerging embryos strategically balance available resources between building up defenses against environmental threats and initiating the developmental program that promotes the switch to autotrophy. We present evidence of a critical role for the phenylalanine (Phe) biosynthetic activity of AROGENATE DEHYDRATASE3 (ADT3) in coordinating reactive oxygen species (ROS) homeostasis and cotyledon development in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. We show that ADT3 is expressed in the cotyledon and shoot apical meristem, mainly in the cytosol, and that the epidermis of adt3 cotyledons contains higher levels of ROS. Genome-wide proteomics of the adt3 mutant revealed a general down-regulation of plastidic proteins and ROS-scavenging enzymes, corroborating the hypothesis that the ADT3 supply of Phe is required to control ROS concentration and distribution to protect cellular components. In addition, loss of ADT3 disrupts cotyledon epidermal patterning by affecting the number and expansion of pavement cells and stomata cell fate specification; we also observed severe alterations in mesophyll cells, which lack oil bodies and normal plastids. Interestingly, up-regulation of the pathway leading to cuticle production is accompanied by an abnormal cuticle structure and/or deposition in the adt3 mutant. Such impairment results in an increase in cell permeability and provides a link to understand the cell defects in the adt3 cotyledon epidermis. We suggest an additional role of Phe in supplying nutrients to the young seedling

    Early Integration of Temperature and Humidity Stimuli in the Drosophila Brain

    No full text
    The Drosophila antenna contains receptor neurons for mechanical, olfactory, thermal, and humidity stimuli. Neurons expressing the ionotropic receptor IR40a have been implicated in the selection of an appropriate humidity range [], but although previous work indicates that insect hygroreceptors may be made up by a "triad" of neurons (with a dry-, a cold-, and a humid-air-responding cell []), IR40a expression included only cold- and dry-air cells. Here, we report the identification of the humid-responding neuron that completes the hygrosensory triad in the Drosophila antenna. This cell type expresses the Ir68a gene, and Ir68a mutation perturbs humidity preference. Next, we follow the projections of Ir68a neurons to the brain and show that they form a distinct glomerulus in the posterior antennal lobe (PAL). In the PAL, a simple sensory map represents related features of the external environment with adjacent "hot," "cold," "dry," and "humid" glomeruli-an organization that allows for both unique and combinatorial sampling by central relay neurons. Indeed, flies avoided dry heat more robustly than humid heat, and this modulation was abolished by silencing of dry-air receptors. Consistently, at least one projection neuron type received direct synaptic input from both temperature and dry-air glomeruli. Our results further our understanding of humidity sensing in the Drosophila antenna, uncover a neuronal substrate for early sensory integration of temperature and humidity in the brain, and illustrate the logic of how ethologically relevant combinations of sensory cues can be processed together to produce adaptive behavioral responses. Frank et al. describe humid-air receptors in the fly antenna. Previous work identified dry-air receptors, and they now show that humid and dry cells converge with thermosensory neurons in the brain, creating a sensory map for environmental parameters. They also describe second-order neurons that sample multiple modalities for early integration

    PRR3 Is a Vascular Regulator of TOC1 Stability in the Arabidopsis Circadian Clock[W][OA]

    No full text
    The pseudoresponse regulators (PRRs) participate in the progression of the circadian clock in Arabidopsis thaliana. The founding member of the family, TIMING OF CAB EXPRESSION1 (TOC1), is an essential component of the transcriptional network that constitutes the core mechanism of the circadian oscillator. Recent data suggest a role in circadian regulation for all five members of the PRR family; however, the molecular function of TOC1 or any other PRRs remains unknown. In this work, we present evidence for the involvement of PRR3 in the regulation of TOC1 protein stability. PRR3 was temporally coexpressed with TOC1 under different photoperiods, yet its tissue expression was only partially overlapping with that of TOC1, as PRR3 appeared restricted to the vasculature. Decreased expression of PRR3 resulted in reduced levels of TOC1 protein, while overexpression of PRR3 caused an increase in the levels of TOC1, all without affecting the amount of TOC1 transcript. PRR3 was able to bind to TOC1 in yeast and in plants and to perturb TOC1 interaction with ZEITLUPE (ZTL), which targets TOC1 for proteasome-dependent degradation. Together, our results indicate that PRR3 might function to modulate TOC1 stability by hindering ZTL-dependent TOC1 degradation, suggesting the existence of local regulators of clock activity and adding to the growing importance of posttranslational regulation in the design of circadian timing mechanisms in plants

    Rapid threat assessment in the Drosophila thermosensory system

    No full text
    Abstract Neurons that participate in sensory processing often display “ON” responses, i.e., fire transiently at the onset of a stimulus. ON transients are widespread, perhaps universal to sensory coding, yet their function is not always well-understood. Here, we show that ON responses in the Drosophila thermosensory system extrapolate the trajectory of temperature change, priming escape behavior if unsafe thermal conditions are imminent. First, we show that second-order thermosensory projection neurons (TPN-IIIs) and their Lateral Horn targets (TLHONs), display ON responses to thermal stimuli, independent of direction of change (heating or cooling) and of absolute temperature. Instead, they track the rate of temperature change, with TLHONs firing exclusively to rapid changes (>0.2 °C/s). Next, we use connectomics to track TLHONs’ output to descending neurons that control walking and escape, and modeling and genetic silencing to demonstrate how ON transients can flexibly amplify aversive responses to small thermal change. Our results suggest that, across sensory systems, ON transients may represent a general mechanism to systematically anticipate and respond to salient or dangerous conditions

    The irritant receptor TRPA1 mediates the mosquito repellent effect of catnip

    No full text
    Catnip (Nepeta cataria) is a common garden herb well known for its euphoric and hallucinogenic effects on domestic cats,1–3 for its medicinal properties,4,5 as well as for its powerful repellent action on insects.6,7 Catnip extracts have been proposed as a natural alternative to synthetic insect repellents, such as N,N-diethyl-3-methylbenzamide (DEET),8,9 but how catnip triggers aversion in insects is not known. Here, we show that, both in Drosophila melanogaster flies and Aedes aegypti mosquitoes, the major mediator of catnip repellency is the widely conserved chemical irritant receptor TRPA1. In vitro, both catnip extract and its active ingredient nepetalactone can directly activate fly and mosquito TRPA1. In vivo, D. melanogaster and Ae. aegypti TRPA1 mutants are no longer repelled by catnip and nepetalactone. Interestingly, our data show that some, but not all, fly and mosquito TRPA1 variants are catnip targets. Moreover, unlike the broad TRPA1 agonist allyl isothiocyanate (AITC) (an active ingredient of tear gas and wasabi), catnip does not activate human TRPA1. Our results support the use of catnip and nepetalactone as insect-selective irritants and suggest that, despite TRPA1’s broad conservation, insect TRPA1 can be targeted for the development of safe repellents. Catnip has been used for millennia as an insect repellent. Melo et al. find that catnip and its major iridoid component nepetalactone activate insect isoforms of the irritant receptor TRPA1. Mosquitoes lacking TRPA1 are no longer repelled by catnip. Catnip does not activate human TRPA1, and this supports its use as a safe natural mosquito repellent

    High-dose dexamethasone treatment for COVID-19 severe acute respiratory distress syndrome: a retrospective study

    No full text
    Low-dose dexamethasone reduces mortality in patients with coronavirus disease 2019 (COVID-19)-related acute respiratory distress syndrome (ARDS). We retrospectively analyzed the efficacy of high-dose dexamethasone in patients with COVID-19-related ARDS and evaluated factors affecting the composite outcome (death or invasive mechanical ventilation). From March 4th to April 1st 2020, 98 patients with COVID-19 pneumonia were included. Those who after at least 7 days from symptom onset presented a worsening of the respiratory function or of inflammatory biomarkers were started on intravenous high-dose dexamethasone (20 mg daily for 5 days, followed by 10 mg daily for 5 days). Most patients were males (62%) with a mean age of 69 years. Hypertension and cardiovascular disease (CVD) were prevalent. Following dexamethasone treatment, a significant improvement in PaO2/FiO2 (277.41 [178.5\u2013374.8] mmHg vs. 146.75 [93.62\u2013231.16] mmHg, p &lt; 0.001), PaO2 (88.15 [76.62\u2013112.0] mmHg vs. 65.65 [57.07\u201381.22] mmHg, p &lt; 0.001), and SpO2 (96 [95\u201398]% vs. 94 [90\u201396]%, p &lt; 0.001) was observed. A concomitant decrease in C-reactive protein and ferritin levels was found (132.25 [82.27\u2013186.5] mg/L vs. 7.3 [3.3\u201324.2] mg/L and 1169 [665\u20132056] ng/mL vs. 874.0 [569.5\u20131434] ng/mL, respectively; p &lt; 0.001 for both vs. baseline). CVD was found to increase the risk of the composite outcome (RR 7.64, 95% CI 1.24\u201347.06, p = 0.028). In hospitalized patients with COVID-19-related ARDS, high-dose dexamethasone rapidly improves the clinical status and decreases inflammatory biomarkers. CVD was found to increase the risk of the composite outcome. These data support the importance of randomized clinical trials with high-dose dexamethasone in COVID-19 patient
    corecore