7 research outputs found

    The consolidated European synthesis of CO2 emissions and removals for the European Union and United Kingdom: 1990–2020

    Get PDF
    Quantification of land surface–atmosphere fluxes of carbon dioxide (CO2) and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural (including formally managed ecosystems) sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed and unmanaged ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven categorical model results, and inverse modeling estimates, extending the previous period 1990–2018 to the year 2020 to the extent possible. BU and TD products are compared with the European national greenhouse gas inventory (NGHGI) reported by parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU member states following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing the NGHGI with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from land use, land use change, and forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI. For CO2 fossil emissions, after harmonizing estimates based on common activities and selecting the most recent year available for all datasets, the UNFCCC NGHGI for the EU27+UK accounts for 926 ± 13 Tg C yr−1, while eight other BU sources report a mean value of 948 [937,961] Tg C yr−1 (25th, 75th percentiles). The sole top-down inversion of fossil emissions currently available accounts for 875 Tg C in this same year, a value outside the uncertainty of both the NGHGI and bottom-up ensemble estimates and for which uncertainty estimates are not currently available. For the net CO2 land fluxes, during the most recent 5-year period including the NGHGI estimates, the NGHGI accounted for −91 ± 32 Tg C yr−1, while six other BU approaches reported a mean sink of −62 [] Tg C yr−1, and a 15-member ensemble of dynamic global vegetation models (DGVMs) reported −69 [] Tg C yr−1. The 5-year mean of three TD regional ensembles combined with one non-ensemble inversion of −73 Tg C yr−1 has a slightly smaller spread (0th–100th percentiles of [] Tg C yr−1), and it was calculated after removing net land–atmosphere CO2 fluxes caused by lateral transport of carbon (crop trade, wood trade, river transport, and net uptake from inland water bodies), resulting in increased agreement with the NGHGI and bottom-up approaches. Results at the category level (Forest Land, Cropland, Grassland) generally show good agreement between the NGHGI and category-specific models, but results for DGVMs are mixed. Overall, for both CO2 fossil and net CO2 land fluxes, we find that current independent approaches are consistent with the NGHGI at the scale of the EU27+UK. We conclude that CO2 emissions from fossil sources have decreased over the past 30 years in the EU27+UK, while land fluxes are relatively stable: positive or negative trends larger (smaller) than 0.07 (−0.61) Tg C yr−2 can be ruled out for the NGHGI. In addition, a gap on the order of 1000 Tg C yr−1 between CO2 fossil emissions and net CO2 uptake by the land exists regardless of the type of approach (NGHGI, TD, BU), falling well outside all available estimates of uncertainties. However, uncertainties in top-down approaches to estimate CO2 fossil emissions remain uncharacterized and are likely substantial, in addition to known uncertainties in top-down estimates of the land fluxes. The data used to plot the figures are available at https://doi.org/10.5281/zenodo.8148461 (McGrath et al., 2023)

    Hybrid metal-polymer nanoparticles as promising radiosensitizers for cancer treatment

    Get PDF
    International audienceNanotechnologies are being widely studied for medical applications, both diagnosis and treatment. They have already shown great promise, especially to treat cancer through various strategies such as chemotherapy, photothermal therapy or radiation therapies. High-Z elements nanoparticles are of particular interest for the latter, considering their ability to amplify the damaging effects of both photon and ion radiations: gold, platinum and gadolinium are amongst the most investigated elements. A well-controlled synthesis is key to obtain stable and scalable nano-objects. Here, various polymers were grafted onto metallic nanoparticles to improve stability and biocompatibility and to facilitate subsequent functionalization. Advanced methods of characterization attested to the robustness and reproducibility of the synthesis procedure. Moreover, promising results were obtained regarding the radioenhancing properties of these hybrid nanocompounds. Polymers mainly synthesized via controlled radical polymerization were grafted onto gold and platinum nanoparticles by a "grafting to" or "grafting from" method. Subsequent grafting of a chemotherapy drug onto the polymer corona was also successfully carried out. The resulting nano-objects were fully characterized by thermogravimetric analysis, transmission electronic microscopy and small-angle x-ray scattering. Small-angle neutron scattering was also performed, taking advantage of possible contrast matching. The impact of various radiation doses on the nanoparticles structure was studied. Finally, radiosensitizing effects were investigated through in vitro tests. Under irradiation, uncoupling and cleavage of polymer chains were demonstrated, leading to an overall size reduction of the hybrid nano-objects. The location of target sites during irradiation was determined and helped to better understand the underlying mechanism of the radiosensitization assessed by the in vitro results. The synthesized nano-objects have therefore shown great potential to enhance radiation cancer treatment. Their stability and controlled surface chemistry will allow to develop multiple strategies to further improve their radiosensitizing effect and in vitro behavior. In vivo tests are currently under study, as well as experiments regarding radioenhancement for proton therapy

    The consolidated European synthesis of CO2 emissions and removals for EU27 and UK: 1990–2020

    Get PDF
    Quantification of land surface-atmosphere fluxes of carbon dioxide (CO2) fluxes and their trends and uncertainties is essential for monitoring progress of the EU27+UK bloc as it strives to meet ambitious targets determined by both international agreements and internal regulation. This study provides a consolidated synthesis of fossil sources (CO2 fossil) and natural sources and sinks over land (CO2 land) using bottom-up (BU) and top-down (TD) approaches for the European Union and United Kingdom (EU27+UK), updating earlier syntheses (Petrescu et al., 2020, 2021b). Given the wide scope of the work and the variety of approaches involved, this study aims to answer essential questions identified in the previous syntheses and understand the differences between datasets, particularly for poorly characterized fluxes from managed ecosystems. The work integrates updated emission inventory data, process-based model results, data-driven sectoral model results, and inverse modeling estimates, extending the previous period 1990–2018 to the year 2020 to the extent possible. BU and TD products are compared with European National Greenhouse Gas Inventories (NGHGIs) reported by Parties including the year 2019 under the United Nations Framework Convention on Climate Change (UNFCCC). The uncertainties of the EU27+UK NGHGI were evaluated using the standard deviation reported by the EU Member States following the guidelines of the Intergovernmental Panel on Climate Change (IPCC) and harmonized by gap-filling procedures. Variation in estimates produced with other methods, such as atmospheric inversion models (TD) or spatially disaggregated inventory datasets (BU), originate from within-model uncertainty related to parameterization as well as structural differences between models. By comparing NGHGIs with other approaches, key sources of differences between estimates arise primarily in activities. System boundaries and emission categories create differences in CO2 fossil datasets, while different land use definitions for reporting emissions from Land Use, Land Use Change and Forestry (LULUCF) activities result in differences for CO2 land. The latter has important consequences for atmospheric inversions, leading to inversions reporting stronger sinks in vegetation and soils than are reported by the NGHGI
    corecore