496 research outputs found

    Effet du chlore sur la colonisation bactérienne d'un réseau expérimental de distribution d'eau

    Get PDF
    La contamination bactérienne de la phase eau d'un réseau de distribution résulte d'une multiplication des bactéries sur les parois des canalisations d'eau (biofilms) suivie de leur arrachage et de leur transport dans le flux circulant. Ce travail met en évidence l'effet du chlore, d'une part, sur la formation des biofilms et, d'autre part, sur des biofilms déjà constitués. Des éprouvettes de matériaux neufs introduites dans des eaux présentant des concentrations en chlore total variant de 2,4 à 0,02 mg/l et véhiculant entre 0,5 x 106 et 5 x 105 cellules bactériennes/mi (dont 1 à 10 % de bactéries cultivables) sont rapidement colonisées (106 à 108 cellules/cm2). L'effet du chlore est sensible sur les cellules totales pour des concentrations de l'ordre de 1 à 2,4 mg/l. Sur les bactéries cultivables, un ralentissement de la croissance du biofilm est observé dÚs 0,3 mg/1 de chlore total. Par contre, des résiduels de 0,02 ou 0,05 mg/l sont sans effet sur la cinétique de formation des biofilms. Des résiduels moyens de chlore total compris entre 2,3 et 3,4 mg/l appliqués en continu pendant 14 jours sur un biofilm constitué d'environ 8,7 x 106 cellules par cm2 (1,7 % de bactéries cultivables), entraßnent l'élimination d'environ 90 % des bactéries fixées (abattement d'1 logarithme) durant les premiers jours d'exposition. L'altération du biofilm exposé à un résiduel de chlore total de l'ordre de 1,3 mg/l est identique, mais toutefois plus étalée dans le temps. Ces essais réalisés sur des éprouvettes de PVC, PE et mortier de ciment n'ont pas permis la mise en évidence de comportements différents de ces 3 supports..Bacterial accumulation in drinking water systems results both of cell deposition on the pipe walls and attached bacteria growth. The presence of a complex biofilm (cells embedded in a matrix of exopolymers) leads to a continuous contamination of the water phase resulting from the erosion of the attached growing biomass. Then, many tentatives to lmit the formation of such a biofilm have been suggested as the removal of biodegradable organic matter fram water or as the application of disinfectant. However, the efficiency of chlorination of the distribution system is debatable. Indeed, adhesion is often described as a factor of protection of attached bacteria which counterbalances the expected effect of disinfectant. Then, the aim of this experimental work is using a model distribution system to evaluate (i) the kinetics of biofilm accumulation on coupons of new materials (Polyvinyl chlorure : PVC, polyethylene : PE, cement) disposed in a constantly chlorinated system (residual total chlorine from 0.021o 2.4 mg. l-1), (ii) the effect of chlorination on previously accumulated biofilms.The industrial pilot plant used in this study is comprised of five loops serially disposed (fig. 1). From previous study of simulation, one may assume that each loop works like a perfectly mixed reactor when the whole pilot plant is equivalent to an infinite tubular reactor with high axial dispersion coefficient. During the experiment, the pilot was continuously fed with finished drinking water front the surface water treatment plant of city of Nancy (i.e. natural finished water with its own chlorine demand, organic nutrients and heterotrophic bacteria).Total number of cells (epifluorescence counts) and heterotrophic plate count bacteria (15 days of incubation at 20 °C) were enumerated both in the water and, after sonication, on the surface of the coupons of tested materials.The first experimentations show that chlorine slows clown the kinetic of deposition of bacteria onto the pipe wall but never prohibits biofilm formation. When the drinking waters carried from 2.4 to 0.02 mg.1-1 of chlorine and from 0.5 to 5 x 105 ml-1 bacterial cells, biofilm is observed after 24 hours of immersion of the coupons with at least 101 to 106 bacteria/cm2. Respectively, the deposition or/and growth rates of total cells are drastically affected only for chlorine residual as high as 1 to 2.4 mg. 1-1. The number of heterotrophic plate count of the biofilm is affected with lower chlorine residual (around 0.3 mg.1-1) but residual concentration as low as 0.05 mg.1-1 are ineffective.The tentatives carried out in the second experience on preformed biofilms (2 months old biofilms, 8.7 x 106 cells/cm2) show that the continuous application of 2.3 to 3.4 mg. 1-1 of residual chlorine for 14 days, leads to the removal of only 90 % of attached total cells without modifications of the proportion of attached alive bacteria (around 1.7 %) into the biofitm. In other wards, a highly chlorinated networks shows at minima 106 attached cells/cm2. Its generally takes several days to reply to the chlorine demand of the system and to have a quasi steady state reactor in terms of residual chlorine.These assays carried out with three types of coupons (PVC, PE, cement lined cast iron) did not show any difference between the tested materials.The limited efficiency of chlorine against the biofilm can be explained by transfert limitations within the visquous layer, high consumption of chlorine by the biopolymers of the attached matrix (proteins...) or low sensitivity to the disinfectant of the slow growing attached bacteria. Then chlorination is really not a panacea in biofilm war but has to be applied in combination with other methods as biodegradable organic matter removal, hydraulic regime improvement..

    ENVIRONMENT AND HEALTH Influence of Resident Salmonella on Contamination of Broiler Flocks

    Get PDF
    ABSTRACT An epidemiological survey was made of 5329 samples from 10 poultry operations to determine the relationship between total poultry farm environment and incidences of Salmonella contamination of broiler flocks. Samples were analyzed from walls, drinkers, feeders, litter, insects, water, chicks, broilers, and feed to determine the effect of common sanitary practices on Salmonella contamination of flocks

    In Situ mechanical effects of a specific neurodynamic mobilization of the superficial fibular nerve: A cadaveric study

    Get PDF
    Context: A specific neurodynamic mobilization for the superficial fibular nerve (SFN) has been suggested in the reference literature for manual therapists to evaluate nerve mechanosensitivity in patients. However, no biomechanical studies examined the ability of this technique to produce nerve strain. Therefore, mechanical specificity of this technique is not yet established. Objective: The aim of our study was to test whether this examination and treatment technique was producing nerve strain in the fresh frozen cadaver and the contribution of each motion to total longitudinal strain. Design: Quantitative original research, controlled laboratory study Methods: A differential variable reluctance transducer was inserted in ten SFN from six fresh cadavers to measure strain during the mobilization. A specific sequence of plantar flexion (PF), ankle inversion (INV), straight leg raise (SLR) position and 30{degree sign} of hip adduction (ADD) was applied to the lower limb. The mobilization was repeated at 0°, 30°, 60° and 90° of Straight Leg Raise (SLR) position to measure the impact of hip flexion position. Findings: Compared to a resting position, this neurodynamic mobilization produced a significant amount of strain in the SFN (7.93% ± 0.51 P < 0.001). PF (59.34% ± 25.82) and INV (32.80% ± 21.41) accounted for the biggest proportion of total strain during the mobilization. No significant difference was reported between different hip flexion positions. Hip ADD did not significantly contribute to final strain (0.39% ± 10.42 P> 0,05) although high subject variability exists. Conclusion: Ankle motions should be considered the most important during neurodynamic assessment of the SFN for distal entrapment. These results suggest that this technique produces sufficient strain in the SFN and could therefore be evaluated In Vivo for correlation with mechanosensitivit

    Spatial heterogeneity promotes coexistence of rock-paper-scissor metacommunities

    Full text link
    The rock-paper-scissor game -- which is characterized by three strategies R,P,S, satisfying the non-transitive relations S excludes P, P excludes R, and R excludes S -- serves as a simple prototype for studying more complex non-transitive systems. For well-mixed systems where interactions result in fitness reductions of the losers exceeding fitness gains of the winners, classical theory predicts that two strategies go extinct. The effects of spatial heterogeneity and dispersal rates on this outcome are analyzed using a general framework for evolutionary games in patchy landscapes. The analysis reveals that coexistence is determined by the rates at which dominant strategies invade a landscape occupied by the subordinate strategy (e.g. rock invades a landscape occupied by scissors) and the rates at which subordinate strategies get excluded in a landscape occupied by the dominant strategy (e.g. scissor gets excluded in a landscape occupied by rock). These invasion and exclusion rates correspond to eigenvalues of the linearized dynamics near single strategy equilibria. Coexistence occurs when the product of the invasion rates exceeds the product of the exclusion rates. Provided there is sufficient spatial variation in payoffs, the analysis identifies a critical dispersal rate d∗d^* required for regional persistence. For dispersal rates below d∗d^*, the product of the invasion rates exceed the product of the exclusion rates and the rock-paper-scissor metacommunities persist regionally despite being extinction prone locally. For dispersal rates above d∗d^*, the product of the exclusion rates exceed the product of the invasion rates and the strategies are extinction prone. These results highlight the delicate interplay between spatial heterogeneity and dispersal in mediating long-term outcomes for evolutionary games.Comment: 31pages, 5 figure

    Relating industrial symbiosis and circular economy to the sustainable development debate

    Get PDF
    Industrial Symbiosis (IS) is a business-focused collaborative approach oriented towards resource efficiency that has been theorised and studied mainly over the last twenty-five years. Recently, IS seems to have found a renewed impetus in the framework of the Circular Economy (CE), a novel approach to sustainability and Sustainable Development (SD) that has been rapidly gaining momentum world-wide. This opening chapter of the book provides an introduction to the concepts of IS, CE and SD, and summarizes their complex evolutionary paths, recalling the rel-evant developments and implementation challenges. In addition, the authors point out the divergences and interrelations of these concepts, both among themselves and with other related concepts and research fields, such as industrial ecology, eco-logical modernization and the green economy. Furthermore, the potential contribu-tion of IS and the CE to SD is briefly discussed, also highlighting critical issues and trade-offs, as well as gaps in research and application, especially relating to the so-cial component of sustainability. Particular attention is given to the potential role of IS in the achievement of targets connected to the Sustainable Development Goals set in the UN Agenda 2030. The recent advances in the IS and CE discussion in the context of the SD research community are further explored, with particular empha-sis on the contribution of the International Sustainable Development Research So-ciety (ISDRS) and its 24th annual conference organised in Messina, Italy, in 2018. The programme of that conference, indeed, included specific tracks on the above-mentioned themes, the contents of which are briefly commented on here, after an overview on the whole conference and the main cross-cutting concepts emerged. In the last part of the chapter, a brief description of the chapters collected in the book is presented. These contributions describe and discuss theoretical frameworks, methodological approaches and/or experiences and case studies where IS and the principles of CE are applied in different geographical context and at different scales to ultimately improve the sustainability of the current production patterns

    Probing Microsecond Time Scale Dynamics in Proteins by Methyl 1H Carr−Purcell−Meiboom−Gill Relaxation Dispersion NMR Measurements. Application to Activation of the Signaling Protein NtrCr

    Get PDF
    To study microsecond processes by relaxation dispersion NMR spectroscopy, low power deposition and short pulses are crucial and encourage the development of experiments that employ H-1 Carr-Purcell-Meiboom-Gill (CPMG) pulse trains. Herein, a method is described for the comprehensive study of microsecond to millisecond time scale dynamics of methyl groups in proteins, exploiting their high abundance and favorable relaxation properties. In our approach, protein samples are produced using [H-1, C-13]-D-glucose in similar to 100% D2O, which yields CHD2 methyl groups for alanine, valine, threonine, isoleucine, leucine, and methionine residues with high abundance, in an otherwise largely deuterated background. Methyl groups in such samples can be sequence-specifically assigned to near completion, using C-13 TOCSY NMR spectroscopy, as was recently demonstrated (Often, R.; et al. J. Am. Chem. Soc. 2010, 132, 2952-2960). In this Article, NMR pulse schemes are presented to measure H-1 CPMG relaxation dispersion profiles for CHD2 methyl groups, in a vein similar to that of backbone relaxation experiments. Because of the high deuteration level of methyl-bearing side chains, artifacts arising from proton scalar coupling during the CPMG pulse train are negligible, with the exception of Ile-delta 1 and Thr-gamma 2 methyl groups, and a pulse scheme is described to remove the artifacts for those residues. Strong C-13 scalar coupling effects, observed for several leucine residues, are removed by alternative biochemical and NMR approaches. The methodology is applied to the transcriptional activator NtrC(r), for which an inactive/active state transition was previously measured and the motions in the microsecond time range were estimated through a combination of backbone N-15 CPMG dispersion NMR spectroscopy and a collection of experiments to determine the exchange-free component to the transverse relaxation rate. Exchange contributions to the H-1 line width were detected for 21 methyl groups, and these probes were found to collectively report on a local structural rearrangement around the phosphorylation site, with a rate constant of (15.5 +/- 0.5) x 10(3) per second (i.e., tau(ex) = 64.7 +/- 1.9 mu s). The affected methyl groups indicate that, already before phosphorylation, a substantial, transient rearrangement takes place between helices 3 and 4 and strands 4 and 5. This conformational equilibrium allows the protein to gain access to the active, signaling state in the absence of covalent modification through a shift in a pre-existing dynamic equilibrium. Moreover, the conformational switching maps exactly to the regions that differ between the solution NMR structures of the fully inactive and active states. These results demonstrate that a cost-effective and quantitative study of protein methyl group dynamics by H-1 CPMG relaxation dispersion NMR spectroscopy is possible and can be applied to study functional motions on the microsecond time scale that cannot be accessed by backbone N-15 relaxation dispersion NMR. The use of methyl groups as dynamics probes extends such applications also to larger proteins
    • 

    corecore