20 research outputs found

    Relay-Aided Communication in Large Interference Limited Wireless Networks

    Get PDF
    In recent years, the number of active wireless devices increases exponentially and it is, therefore, to expect that the interference increases as well. Interference between communication links is the major performance limiting factor in today's communication networks. Hence, the handling of the overall interference in a network is one major challenge in wireless communication networks of the future. If the interference signals are weak in comparison to the useful signal, they can be simply treated as noise. If the interference signals are strong in comparison to the useful signal, they can be reliably decoded and subtracted from the received signal at the receivers. However, in multiuser communication networks, the interference and the useful signal are often of comparable signal strength. The conventional approach to handle these interference signals is to orthogonalize the useful signal and the interference signals using, e.g., time division multiple access (TDMA) or frequency division multiple access (FDMA). In the past few years, instead of orthogonalization, interference alignment (IA) has been developed as an efficient technique to handle interference signals, especially in the high signal to noise ratio (SNR) region. The basic idea of IA is to align multiple interference signals in a particular subspace of reduced dimension at each receiver. The objective is to minimize the signal dimensions occupied by interference at each receiver. In order to perform IA, the receive space is divided into two disjoint subspaces, the useful signal subspace and the interference signal subspace. Each transmitting node designs its transmit filters in such a way that at each receiving node, all interference signals are within the interference subspace and only the useful signal is in the useful subspace. In this thesis, the focus is on large interference limited wireless communication networks. In contrast to the conventional use of relays, for extending the coverage, in this thesis, the relays are used to manipulate the effective end-to-end channel between the transmitters and receivers to perform IA in the network. Since the relays are used to assist the process of IA and not interested in the data streams transmitted by the nodes, amplify-and-forward relays are sufficient to support the process of IA. Therefore, the main focus of this thesis is on amplify-and-forward relays. Throughout this thesis, it is assumed that all nodes and relays are multi-antenna half-duplex devices. When considering large networks, the assumption that all nodes are connected to all relays does not hold due to physical propagation phenomena, e.g., high path loss and shadowing. In such large networks, the distances between different nodes may differ a lot, leading to links of considerably different signal strengths, where sufficiently weak links may be neglected. Hence, large networks are in general partially connected. In this thesis, three important interference-limited relay aided wireless network topologies are investigated, the partially connected relay aided multi-pair pair-wise communication network, the fully connected multi-group multi-way relaying network and the partially connected multi-group multi-way relaying network. For each of these topologies, new algorithms to perform IA are developed in this thesis. First, a large partially connected relay aided pair-wise communication network is considered. The concept of an appropriate partitioning of a partially connected network into subnetworks which are themselves fully connected is introduced. Each of these subnetworks contains a single relay and all nodes being connected to this relay. Some nodes or even communication pairs may be connected to multiple relays. The bidirectional pair-wise communication between the nodes takes place via the intermediate relays, using the two-way relaying protocol. Only relays which are connected to both nodes of a communication pair can serve this pair. Hence, it is assumed that all communication pairs in the entire network are served by at least one relay. The most challenging part of such a partially connected network is the handling of nodes which are connected to multiple relays. Hence, techniques called simultaneous signal alignment (SSA) and simultaneous channel alignment (SCA), are proposed to perform signal alignment (SA) and channel alignment (CA) with multiple relays simultaneously. SA means that all nodes transmit to the relay in such a way that the signals of each communicating pair are pair-wise aligned at the relay. For CA, which is dual to SA, the receive filter of each node is designed such that the effective channels between the relay and both nodes of a communicating pair span the same subspace. A closed-form solution to perform IA in this network topology is obtained and the properness conditions for SSA and SCA are derived. It is shown that local channel state information (CSI) is sufficient to perform IA in partially connected networks, whereas in fully connected relay aided networks, global CSI is required in general. Through simulations, it is shown that the proposed closed-form solution achieves more degrees of freedom (DoF) than the reference algorithms and has better sum-rate performance, especially in the high SNR-region. Especially in large wireless networks, it may happen that not both nodes of a communication pair are connected to the same relays. If a single node of a communication pair is in addition connected to a relay which, therefore, cannot assist the communication, this node receives only interference and no useful signal from this relay. Such a node suffers from inter-subnetwork interference, due to the connection by an inter-subnetwork link to the additional relay. Hence, in this thesis, a closed form algorithm which minimizes the inter-subnetwork interference power in the whole partially connected network is proposed and the properness conditions are derived. The condition under which an interference free-communication can be achieved by the proposed inter-subnetwork interference power minimization algorithm is derived. Further, it is shown that the proposed inter-subnetwork interference power minimization algorithm achieves a higher sum rate in comparison to the considered reference algorithm. Secondly, a fully connected multi-group multi-way relaying networks is considered. In such a network, multiple nodes form a group and each node wants to share its message with all other nodes in its group via an intermediate relay. The group-wise communication between the nodes inside a group takes place via the intermediate relay, using a transmission strategy considering several multiple access (MAC) phases and several multicast (MC) phases, in general. In this thesis, a multicast IA algorithm to handle the interference in such a network is proposed. The idea of the proposed algorithm is that in each of the MC phases, a multiple input multiple output (MIMO) interference multicast channel is created by separating the antennas of the relay into as many clusters as groups in the network. Each of these clusters serves a specific group of nodes and transmits in such a way that the signals transmitted from different clusters are aligned at the receiving nodes of the non-intended multicast groups. It is shown that the minimum required number of antennas at the relay is independent of the number of nodes per group, which is an important property since the number of antennas available at the relay is limited in general. Furthermore, the properness conditions for the proposed multicast IA algorithm are derived. It is shown that the proposed multicast algorithm outperforms a reference algorithm for a broad range of SNR values, while still requiring less antennas at the relay. Finally, a large partially connected multi-group multi-way relay network is considered. In contrast to the fully connected multi-group multi-way relaying network, multiple relays are considered in this partially connected network. Such a partially connected network can be partitioned into subnetworks that are themselves fully connected. Hence, such a partially connected network consists of multiple subnetworks, where each of these contains a single relay and all groups of nodes which are connected to this relay. Each group of nodes may be connected to one or multiple relays. This means that not all groups of nodes are connected to all relays in the network. However, any group is connected to at least one relay which serves this group of nodes. The group-wise exchange of data between the nodes inside a group is performed via the multi-way relaying protocol. The most challenging part of such a partially connected network is the handling of the nodes inside groups which are connected to multiple relays. To overcome this challenge, new techniques called simultaneous group signal alignment (SGSA) and simultaneous group channel alignment (SGCA) are introduced to perform SA and CA in partially connected multi-group multi-way relaying networks. A closed-form IA solution for this network topology is obtained and the properness conditions for the solvability of SGSA and SGCA are derived. It is shown that the proposed IA algorithm outperforms the reference algorithm in terms of sum rate and DoF

    Cross-Platform Comparison of Untargeted and Targeted Lipidomics Approaches on Aging Mouse Plasma.

    Get PDF
    Lipidomics - the global assessment of lipids - can be performed using a variety of mass spectrometry (MS)-based approaches. However, choosing the optimal approach in terms of lipid coverage, robustness and throughput can be a challenging task. Here, we compare a novel targeted quantitative lipidomics platform known as the Lipidyzer to a conventional untargeted liquid chromatography (LC)-MS approach. We find that both platforms are efficient in profiling more than 300 lipids across 11 lipid classes in mouse plasma with precision and accuracy below 20% for most lipids. While the untargeted and targeted platforms detect similar numbers of lipids, the former identifies a broader range of lipid classes and can unambiguously identify all three fatty acids in triacylglycerols (TAG). Quantitative measurements from both approaches exhibit a median correlation coefficient (r) of 0.99 using a dilution series of deuterated internal standards and 0.71 using endogenous plasma lipids in the context of aging. Application of both platforms to plasma from aging mouse reveals similar changes in total lipid levels across all major lipid classes and in specific lipid species. Interestingly, TAG is the lipid class that exhibits the most changes with age, suggesting that TAG metabolism is particularly sensitive to the aging process in mice. Collectively, our data show that the Lipidyzer platform provides comprehensive profiling of the most prevalent lipids in plasma in a simple and automated manner

    In-depth triacylglycerol profiling using MS3 Q-Trap mass spectrometry

    Get PDF
    Total triacylglycerol (TAG) level is a key clinical marker of metabolic and cardiovascular diseases. However, the roles of individual TAGs have not been thoroughly explored in part due to their extreme structural complexity. We present a targeted mass spectrometry-based method combining multiple reaction monitoring (MRM) and multiple stage mass spectrometry (MS3) for the comprehensive qualitative and semiquantitative profiling of TAGs. This method referred as TriP-MS3 – triacylglycerol profiling using MS3 – screens for more than 6,700 TAG species in a fully automated fashion. TriP-MS3 demonstrated excellent reproducibility (median interday CV ∼ 0.15) and linearity (median R2 = 0.978) and detected 285 individual TAG species in human plasma. The semiquantitative accuracy of the method was validated by comparison with a state-of-the-art reverse phase liquid chromatography (RPLC)-MS (R2 = 0.83), which is the most commonly used approach for TAGs profiling. Finally, we demonstrate the utility and the versatility of the method by characterizing the effects of a fatty acid desaturase inhibitor on TAG profiles in vitro and by profiling TAGs in Caenorhabditis elegans.Fil: Cabruja, Matias Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. University of Stanford; Estados UnidosFil: Priotti, Josefina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. University of California; Estados UnidosFil: Domizi, Pablo Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario; Argentina. University of Stanford; Estados UnidosFil: Papsdorf, Katharina. University of Stanford; Estados UnidosFil: Kroetz, Deanna L.. University of California; Estados UnidosFil: Brunet, Anne. University of Stanford; Estados UnidosFil: Contrepois, Kévin. University of Stanford; Estados UnidosFil: Snyder, Michael P.. University of Stanford; Estados Unido

    Efficacy and safety of open-label etanercept on extended oligoarticular juvenile idiopathic arthritis, enthesitis-related arthritis and psoriatic arthritis: part 1 (week 12) of the CLIPPER study

    Get PDF
    OBJECTIVE: To investigate the efficacy and safety of etanercept (ETN) in paediatric subjects with extended oligoarticular juvenile idiopathic arthritis (eoJIA), enthesitis-related arthritis (ERA), or psoriatic arthritis (PsA). METHODS: CLIPPER is an ongoing, Phase 3b, open-label, multicentre study; the 12-week (Part 1) data are reported here. Subjects with eoJIA (2-17 years), ERA (12-17 years), or PsA (12-17 years) received ETN 0.8 mg/kg once weekly (maximum 50 mg). Primary endpoint was the percentage of subjects achieving JIA American College of Rheumatology (ACR) 30 criteria at week 12; secondary outcomes included JIA ACR 50/70/90 and inactive disease. RESULTS: 122/127 (96.1%) subjects completed the study (mean age 11.7 years). JIA ACR 30 (95% CI) was achieved by 88.6% (81.6% to 93.6%) of subjects overall; 89.7% (78.8% to 96.1%) with eoJIA, 83.3% (67.2% to 93.6%) with ERA and 93.1% (77.2% to 99.2%) with PsA. For eoJIA, ERA, or PsA categories, the ORs of ETN vs the historical placebo data were 26.2, 15.1 and 40.7, respectively. Overall JIA ACR 50, 70, 90 and inactive disease were achieved by 81.1, 61.5, 29.8 and 12.1%, respectively. Treatment-emergent adverse events (AEs), infections, and serious AEs, were reported in 45 (35.4%), 58 (45.7%), and 4 (3.1%), subjects, respectively. Serious AEs were one case each of abdominal pain, bronchopneumonia, gastroenteritis and pyelocystitis. One subject reported herpes zoster and another varicella. No differences in safety were observed across the JIA categories. CONCLUSIONS: ETN treatment for 12 weeks was effective and well tolerated in paediatric subjects with eoJIA, ERA and PsA, with no unexpected safety findings

    The application of statistical decision theory to a perceptual decision-making problem

    No full text
    The object of this study was to determine whether statistical decision theory, or a special application of it, the theory of signal detection, could be of value in accounting for the behaviour of subjects in a perceptual decision-making task. The amount of information in these tasks was varied to see if the theory could predict changes in subject performance. Five subjects were required to distinguish between fifty percent time compressed recordings of the stimulus words "commination" and "comminution” embedded in "white" noise. Under one treatment, compression was gained by discarding many small letter segments while in the other this same compression value was obtained by discarding a few large letter segments. It was hypothesized that large-discard- interval compression would be more detrimental to stimulus intelligibility than small-discard-interval compression. Five other subjects were asked to distinguish between the two noise-embedded stimulus words which had been time-compressed sixty and seventy-four percent. It was predicted that sixty percent compression would be less detrimental to the intelligibility of the stimulus words than seventy-four percent compression. Concurrently, in both groups, an attempt was made to manipulate the degree of cautiousness or decision criteria of all ten subjects. Such manipulation was attempted in order to permit the separation of each subjects' actual sensitivity from each's variable decision criterion. This manipulation involved varying the costs and fines associated with correct and incorrect decisions as well as the probabilities of each stimulus word's occurrence. Large-discard-interval compression was found to be less detrimental to intelligibility, as inferred from subject performance, than small-discard-interval compression. This finding was contrary to the first hypothesis. Sixty percent compression, as predicted, was less detrimental to intelligibility than seventy-four percent compression. It was observed that the theory of signal detection permitted separation of each subjects' sensitivity from his monetary degree of cautiousness. This cautiousness was also found to be accessible to manipulation. It is suggested that since the approach of statistical decision theory detected changes in subject performance in response to varying amounts of information, it can be profitably applied to the study of perception.Arts, Faculty ofPsychology, Department ofGraduat

    MIMO Multi-Group Multi-Way Relaying: Interference Alignment in a Partially Connected Network

    No full text

    Interference Alignment in Partially Connected Multi-User Two-Way Relay Networks

    No full text

    Inter-Subnetwork Interference Minimization in Partially Connected Two-Way Relaying Networks

    No full text
    corecore