9 research outputs found

    Measurement of gaseous HNO3 over the Atlantic Ocean

    No full text
    A latitudinal profile (30° W, from 30° N to 30° S) of mixing ratios of nitric acid and particulate nitrate was determined on the Atlantic Ocean during the Polarstern cruise ANT VII/1 from Bremerhaven, Germany, to Rio Grande, Brazil. The detection of HNO3 was performed simultaneously by laser-photolysis fragment-fluorescence (LPFF) and by nylon filter packs. The detection limit was about 30 pptv for a signal accumulation time of 1 h for LPFF and about 5 pptv for the filters at a collection time of 4 h. In general, the mixing ratios of HNO3 in the Northern Hemisphere were found to be significantly higher than those in the Southern Hemisphere. The Atlantic background concentrations frequently varied between 80 pptv and the detection limit. Larger deviations from this trend were found for the more northern latitudes and for episodes like crossings of exhaust plumes from ships or from continental pollutions sources

    Refolding and enzyme kinetic studies on the ferrochelatase of the cyanobacterium synechocystis sp. PCC 6803

    Get PDF
    Heme is a cofactor for proteins participating in many important cellular processes, including respiration, oxygen metabolism and oxygen binding. The key enzyme in the heme biosynthesis pathway is ferrochelatase (protohaem ferrolyase, EC 4.99.1.1), which catalyzes the insertion of ferrous iron into protoporphyrin IX. In higher plants, the ferrochelatase enzyme is localized not only in mitochondria, but also in chloroplasts. The plastidic type II ferrochelatase contains a C-terminal chlorophyll a/b (CAB) motif, a conserved hydrophobic stretch homologous to the CAB domain of plant light harvesting proteins and light-harvesting like proteins. This type II ferrochelatase, found in all photosynthetic organisms, is presumed to have evolved from the cyanobacterial ferrochelatase. Here we describe a detailed enzymological study on recombinant, refolded and functionally active type II ferrochelatase (FeCh) from the cyanobacterium Synechocystis sp. PCC 6803. A protocol was developed for the functional refolding and purification of the recombinant enzyme from inclusion bodies, without truncation products or soluble aggregates. The refolded FeCh is active in its monomeric form, however, addition of an N-terminal His6-tag has significant effects on its enzyme kinetics. Strikingly, removal of the C-terminal CAB-domain led to a greatly increased turnover number, kcat, compared to the full length protein. While pigments isolated from photosynthetic membranes decrease the activity of FeCh, direct pigment binding to the CAB domain of FeCh was not evident.The authors are thankful to the Royal Swedish Academy (to C.F.) and the Kempe foundation (to P.S.) for granting their positions. The work was supported by the Swedish Energy Agency and Umeå University. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. </p

    Biatex Publications: 1988–1995

    No full text

    Technical design report for the P‾ANDA\overline{{\rm{P}}}\mathrm{ANDA} Barrel DIRC detector

    Get PDF
    The P‾ANDA\overline{{\rm{P}}}\mathrm{ANDA} (anti-Proton ANnihiliation at DArmstadt) experiment will be one of the four flagship experiments at the new international accelerator complex FAIR (Facility for Antiproton and Ion Research) in Darmstadt, Germany. P‾ANDA\overline{{\rm{P}}}\mathrm{ANDA} will address fundamental questions of hadron physics and quantum chromodynamics using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c and a design luminosity of up to 2 × 1032 cm−2 s−1. Excellent particle identification (PID) is crucial to the success of the P‾ANDA\overline{{\rm{P}}}\mathrm{ANDA} physics program. Hadronic PID in the barrel region of the target spectrometer will be performed by a fast and compact Cherenkov counter using the detection of internally reflected Cherenkov light (DIRC) technology. It is designed to cover the polar angle range from 22° to 140° and will provide at least 3 standard deviations (s.d.) π/K separation up to 3.5 GeV/c, matching the expected upper limit of the final state kaon momentum distribution from simulation. This documents describes the technical design and the expected performance of the P‾ANDA\overline{{\rm{P}}}\mathrm{ANDA} Barrel DIRC detector. The design is based on the successful BaBar DIRC with several key improvements. The performance and system cost were optimized in detailed detector simulations and validated with full system prototypes using particle beams at GSI and CERN. The final design meets or exceeds the PID goal of clean π/K separation with at least 3 s.d. over the entire phase space of charged kaons in the Barrel DIRC
    corecore