23 research outputs found

    SIREN – A network infrastructure for emergencies.

    Get PDF
    The SIREN project (Secure, Interoperable, UAV-assisted, Rapid Emergency Deployment Communication and sensing Infrastructure) implements a secure, distributed, open, self-configured and emergency-aware network and service platform for automated, secure and dependable support of multiple mission critical applications in highly demanding and dynamic emergency environments

    Vinculin controls talin engagement with the actomyosin machinery

    Get PDF
    The link between extracellular-matrix-bound integrins and intracellular F-actin is essential for cell spreading and migration. Here, we demonstrate how the actin-binding proteins talin and vinculin cooperate to provide this link. By expressing structure-based talin mutants in talin null cells, we show that while the C-terminal actin-binding site (ABS3) in talin is required for adhesion complex assembly, the central ABS2 is essential for focal adhesion (FA) maturation. Thus, although ABS2 mutants support cell spreading, the cells lack FAs, fail to polarize and exert reduced force on the surrounding matrix. ABS2 is inhibited by the preceding mechanosensitive vinculin-binding R3 domain, and deletion of R2R3 or expression of constitutively active vinculin generates stable force-independent FAs, although cell polarity is compromised. Our data suggest a model whereby force acting on integrin-talin complexes via ABS3 promotes R3 unfolding and vinculin binding, activating ABS2 and locking talin into an actin-binding configuration that stabilizes FAs

    A Network-Based Multi-Target Computational Estimation Scheme for Anticoagulant Activities of Compounds

    Get PDF
    BACKGROUND: Traditional virtual screening method pays more attention on predicted binding affinity between drug molecule and target related to a certain disease instead of phenotypic data of drug molecule against disease system, as is often less effective on discovery of the drug which is used to treat many types of complex diseases. Virtual screening against a complex disease by general network estimation has become feasible with the development of network biology and system biology. More effective methods of computational estimation for the whole efficacy of a compound in a complex disease system are needed, given the distinct weightiness of the different target in a biological process and the standpoint that partial inhibition of several targets can be more efficient than the complete inhibition of a single target. METHODOLOGY: We developed a novel approach by integrating the affinity predictions from multi-target docking studies with biological network efficiency analysis to estimate the anticoagulant activities of compounds. From results of network efficiency calculation for human clotting cascade, factor Xa and thrombin were identified as the two most fragile enzymes, while the catalytic reaction mediated by complex IXa:VIIIa and the formation of the complex VIIIa:IXa were recognized as the two most fragile biological matter in the human clotting cascade system. Furthermore, the method which combined network efficiency with molecular docking scores was applied to estimate the anticoagulant activities of a serial of argatroban intermediates and eight natural products respectively. The better correlation (r = 0.671) between the experimental data and the decrease of the network deficiency suggests that the approach could be a promising computational systems biology tool to aid identification of anticoagulant activities of compounds in drug discovery. CONCLUSIONS: This article proposes a network-based multi-target computational estimation method for anticoagulant activities of compounds by combining network efficiency analysis with scoring function from molecular docking

    Mechanical unfolding of proteins – comparative non-equilibrium molecular dynamics study

    Get PDF
    Mechanical signals regulate functions of mechanosensitive proteins by inducing structural changes that are determinant for force-dependent interactions. Talin is a focal adhesion protein that is known to extend under mechanical load, and it has been shown to unfold via intermediate states. Here, we compared different nonequilibrium molecular dynamics (MD) simulations to study unfolding of the talin rod. We combined boxed MD (BXD), steered MD, and umbrella sampling (US) techniques and provide free energy profiles for unfolding of talin rod subdomains. We conducted BXD, steered MD, and US simulations at different detail levels and demonstrate how these different techniques can be used to study protein unfolding under tension. Unfolding free energy profiles determined by BXD suggest that the intermediate states in talin rod subdomains are stabilized by force during unfolding, and US confirmed these results

    Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase

    No full text
    Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis

    Characterization of human DHRS6, an orphan short chain dehydrogenase/reductase enzyme: a novel, cytosolic type 2 R-beta-hydroxybutyrate dehydrogenase.

    No full text
    Human DHRS6 is a previously uncharacterized member of the short chain dehydrogenases/reductase family and displays significant homologies to bacterial hydroxybutyrate dehydrogenases. Substrate screening reveals sole NAD(+)-dependent conversion of (R)-hydroxybutyrate to acetoacetate with K(m) values of about 10 mm, consistent with plasma levels of circulating ketone bodies in situations of starvation or ketoacidosis. The structure of human DHRS6 was determined at a resolution of 1.8 A in complex with NAD(H) and reveals a tetrameric organization with a short chain dehydrogenases/reductase-typical folding pattern. A highly conserved triad of Arg residues ("triple R" motif consisting of Arg(144), Arg(188), and Arg(205)) was found to bind a sulfate molecule at the active site. Docking analysis of R-beta-hydroxybutyrate into the active site reveals an experimentally consistent model of substrate carboxylate binding and catalytically competent orientation. GFP reporter gene analysis reveals a cytosolic localization upon transfection into mammalian cells. These data establish DHRS6 as a novel, cytosolic type 2 (R)-hydroxybutyrate dehydrogenase, distinct from its well characterized mitochondrial type 1 counterpart. The properties determined for DHRS6 suggest a possible physiological role in cytosolic ketone body utilization, either as a secondary system for energy supply in starvation or to generate precursors for lipid and sterol synthesis

    Antineoplastic Activity of 9″-Lithospermic Acid Methyl Ester in Glioblastoma Cells

    No full text
    To date, many potent compounds have been found which are derived from plants and herbs and possess anticancer properties due to their antioxidant effects. 9″-Lithospermic acid methyl ester is an effective natural compound derived from the Thymus thracicus Velen. It has been proven that this compound has substantial properties in different diseases, but its effects in cancer have not been thoroughly evaluated. The aim of this work was to study the effects of 9″-Lithospermic acid methyl ester (9″-methyl lithospermate) in U87 and T98 glioblastoma cell lines. Its effects on cellular viability were assessed via Trypan Blue and Crystal Violet stains, the cell cycle analysis through flow cytometry, and cell migration by employing the scratch wound healing assay. The results demonstrated that 9″-methyl lithospermate was able to inhibit cellular proliferation, induce cellular death, and inhibit cell migration. Furthermore, these results were intensified by the addition of temozolomide, the most prominent chemotherapeutic drug in glioblastoma tumors. Further studies are needed to reproduce these findings in animal models and investigate if 9″-lithospermic acid methyl ester represents a potential new therapeutic addition for gliomas

    Carob (<em>Ceratonia siliqua</em>) as Functional Feed Is Beneficial in Yellow Mealworm (<em>Tenebrio molitor</em>) Rearing: Evidence from Growth, Antioxidant Status and Cellular Responses

    No full text
    In terms of sustainability and circular economy, agricultural by-products may be efficiently reused in insects’ rearing for high-quality protein sources in human diet and animal feeds. The present study aimed to explore whether the utilization of carob pods as feeding substrate may beneficially affect Tenebrio molitor’s growth, nutritional value, antioxidant status and cellular responses. Increasing levels of milled whole carob pods (0, 25, 50, 75, 100%) were used as alternative wheat bran (control) substrates for yellow mealworm rearing, while growth performance, proximate composition, total phenolic content, antioxidant enzyme activity and the expression of stress- and apoptotic-related proteins were evaluated in larvae. The results showed that carob pods’ content up to 75% did not significantly differentiate larvae weight, development time and total dry matter. Larvae total phenolic content and antioxidant activity exhibited a significant increase at 75% content. Although the antioxidant enzymes’ activity decreased at both 25 and 50% levels, higher carob content levels (75 and 100%) resulted in no significant changes compared to the control. Carob pods led to decreased apoptotic indicators and the low expression of most stress-related proteins compared to the control. The present findings demonstrate that carob pods and their antioxidant properties exert beneficial effects on T. molitor’s rearing and nutritional status, although 100% carob content may impact adversely the larvae due to the high amounts of carob tannins

    In Vitro Antioxidant, Antimicrobial, Anticoccidial, and Anti-Inflammatory Study of Essential Oils of Oregano, Thyme, and Sage from Epirus, Greece

    No full text
    Origanum vulgare subsp. hirtum, Thymus vulgaris, and Salvia fructicosa are aromatic plants commonly found in Mediterranean countries and are traditionally used in Greece as a remedy for humans, since they are well known as potent antibacterial, antioxidant, and anti-inflammatory agents. Essential oils (EOs) derived from plants cultivated in the mountainous region of Epirus, Greece, were investigated for their inhibitory activity against key microorganisms with relevance to avian health, while also assessing their antioxidant and anti-inflammatory activity. The total phenolic content (TPC) of the EOs was estimated according to the Folin–Ciocalteu method, while the antioxidant capacity was tested through the EOs’ ability to scavenge free radicals by means of the DPPH, ABTS, and FRAP assays. Antibacterial and anti-inflammatory effects were examined by the agar disc diffusion method and the lipoxygenase (LOX) inhibition test, respectively. Furthermore, the EOs’ ability to inhibit the invasion of sporozoites of Eimeria tenella (Wisconsin strain) along with any toxic effects were assayed in Madin–Darby bovine kidney (MDBK) cells. The antioxidant activity of the EOs was observed in descending order: oregano > thyme > sage. The antimicrobial effects of thyme and oregano were equivalent and higher than that of sage, while the anti-inflammatory effect of thyme was higher compared to both sage and oregano. The intracellular invasion of sporozoites was evaluated by the detection of E. tenella DNA by qPCR from cell monolayers harvested at 2 and 24 h post-infection. Parasite invasion was inhibited by the addition of oregano essential oil at the concentration of 100 μg/mL by 83% or 93% after 2 or 24 h, respectively, and was higher compared to the addition of thyme and sage, which had similar effects, but at a less intensive level. The cytotoxic assessment of all three essential oils revealed that they had no effect on MDBK cells compared to dimethyl sulfoxide (DMSO), used as the control substance. The supplementation of oregano, thyme, and sage essential oils had a potent antioxidant, anti-inflammatory, antimicrobial, and anticoccidial in vitro effect that is comparable to synthetic substances or approved drugs, justifying the need for further evaluation by in vivo studies in broilers reared in the absence of antimicrobial and anticoccidial drugs or synthetic antioxidant and/or anti-inflammatory compounds

    Partnering for enhanced digital surveillance of influenza-like disease and the effect of antivirals and vaccines (PEDSIDEA)

    No full text
    Background: Standardised clinical outcome measures are urgently needed for the surveillance of influenza and influenza-like illness (ILI) based on individual patient data (IPD). Objectives: We report a multicentre prospective cohort using a predefined disease severity score in routine care. Patients/Methods: The Vienna Vaccine Safety initiative (ViVI) Disease Severity Score (“ViVI Score”) was made available as an android-based mobile application to three paediatric hospitals in Berlin and Athens between 2013 and 2016. Healthcare professionals assessed ILI patients at the point of care including severity, risk factors and use of antibiotics/antivirals/vaccines. RT-PCR for influenza A/B viruses was performed at the Hellenic Pasteur Institute and the Robert Koch Institute. PCR testing was blinded to severity scoring and vice versa. Results: A total of 1615 children aged 0-5 years (54.4% males) were assessed at the three sites. The mean age was 1.7 years (SD 1.5; range 0-5.9). The success rate (completion of the scoring without disruption to the ER workflow) was 100%. ViVI Disease Severity Scores ranged from 0 to 35 (mean 13.72). Disease severity in the Berlin Cohort was slightly higher (mean 15.26) compared to the Athens Cohorts (mean 10.86 and 11.13). The administration of antibiotics was most prevalent in the Berlin Cohort, with 41.2% on antibiotics (predominantly cefuroxime) as opposed to only 0.5% on neuraminidase inhibitors. Overall, Risk-adjusted ViVI Scores were significantly linked to the prescription of both, antibiotics and antivirals. Conclusions: The Risk-adjusted ViVI Score enables a precision medicine approach to managing ILI in multicentre settings. Using mobile applications, severity data will be obtained in real time with important implications for the evaluation of antiviral/vaccine use. © 2019 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley &amp; Sons Ltd
    corecore