48 research outputs found

    The TLR9 ligand CpG ODN 2006 is a poor adjuvant for the induction of de novo CD8+ T-cell responses in vitro

    Get PDF
    Toll-like receptor 9 (TLR9) agonists have gained traction in recent years as potential adjuvants for the induction of adaptive immune responses. It has nonetheless remained unclear to what extent such ligands can facilitate the priming events that generate antigen-specific effector and/or memory CD8+ T-cell populations. We used an established in vitro model to prime naive precursors from human peripheral blood mononuclear cells in the presence of various adjuvants, including CpG ODN 2006, a synthetic oligonucleotide TLR9 ligand (TLR9L). Unexpectedly, we found that TLR9L induced a suboptimal inflammatory milieu and promoted the antigen-driven expansion and functional maturation of naive CD8+ T cells ineffectively compared with either ssRNA40 or 2′3′-cGAMP, which activate other pattern recognition receptors (PRRs). TLR9L also inhibited the priming efficacy of 2′3′-cGAMP. Collectively, these results suggest that TLR9L is unlikely to be a good candidate for the optimal induction of de novo CD8+ T-cell responses, in contrast to adjuvants that operate via discrete PRRs

    Reduced naïve CD8+T-cell priming efficacy in elderly adults

    Get PDF
    International audienceAging is associated with impaired vaccine efficacy and increased susceptibility to infectious and malignant diseases. CD8 + T-cells are key players in the immune response against pathogens and tumors. In aged mice, the dwindling na€ ıve CD8 + T-cell compartment is thought to compromise the induction of de novo immune responses, but no experimental evidence is yet available in humans. Here, we used an original in vitro assay based on an accelerated dendritic cell coculture system in unfractioned peripheral blood mononuclear cells to examine CD8 + T-cell priming efficacy in human volunteers. Using this approach, we report that old individuals consistently mount quantitatively and qualitatively impaired de novo CD8 + T-cell responses specific for a model antigen. Reduced CD8 + T-cell priming capacity in vitro was further associated with poor primary immune responsiveness in vivo. This immune deficit likely arises as a consequence of intrinsic cellular defects and a reduction in the size of the na€ ıve CD8 + T-cell pool. Collectively, these findings provide new insights into the cellular immune insufficiencies that accompany human aging

    HIV-specific Cytotoxic T Cells from Long-Term Survivors Select a Unique T Cell Receptor

    Get PDF
    HIV-specific cytotoxic T lymphocytes (CTL) are important in controlling HIV replication, but the magnitude of the CTL response does not predict clinical outcome. In four donors with delayed disease progression we identified Vβ13.2 T cell receptors (TCRs) with very similar and unusually long β-chain complementarity determining region 3 (CDR3) regions in CTL specific for the immunodominant human histocompatibility leukocyte antigens (HLA)-B8–restricted human immunodeficiency virus-1 (HIV-1) nef epitope, FLKEKGGL (FL8). CTL expressing Vβ13.2 TCRs tolerate naturally arising viral variants in the FL8 epitope that escape recognition by other CTL. In addition, they expand efficiently in vitro and are resistant to apoptosis, in contrast to FL8–specific CTL using other TCRs. Selection of Vβ13.2 TCRs by some patients early in the FL8-specific CTL response may be linked with better clinical outcome

    Naïve CD8+ T-cells engage a versatile metabolic program upon activation in humans and differ energetically from memory CD8+ T-cells

    Get PDF
    Background: Characterization of the intracellular biochemical processes that regulate the generation and maintenance of effector and memory CD8+ T-cells from naïve precursors is essential for our understanding of adaptive immune responses and the development of immunotherapies. However, the metabolic determinants of antigen-driven activation and differentiation remain poorly defined, especially in humans. Methods: We used a variety of different approaches, including gene expression profiling and measurements of nutrient flux, to characterize the basal and activation-induced energetic requirements of naïve and phenotypically-defined subsets of human memory CD8+ T-cells. Findings: Profound metabolic differences were apparent as a function of differentiation status, both at rest and in response to stimulation via the T cell receptor (TCR). Of particular note, resting naïve CD8+ T cells were largely quiescent, but rapidly upregulated diverse energetic pathways after ligation of surface-expressed TCRs. Moreover, autophagy and the mechanistic target of rapamycin (mTOR)-dependent glycolytic pathway were identified as critical mediators of antigen-driven priming in the naïve CD8+ T cell pool, the efficiency of which was dampened by the presence of neutral lipids and fatty acids. Interpretation: These observations provide a metabolic roadmap of the CD8+ T-cell compartment in humans and reveal potentially selective targets for novel immunotherapies

    Naïve CD8+ T-Cells Engage a Versatile Metabolic Program Upon Activation in Humans and Differ Energetically From Memory CD8+ T-Cells

    Get PDF
    Background: Characterization of the intracellular biochemical processes that regulate the generation and maintenance of effector and memory CD8+ T-cells from naïve precursors is essential for our understanding of adaptive immune responses and the development of immunotherapies. However, the metabolic determinants of antigen-driven activation and differentiation remain poorly defined, especially in humans.Methods: We used a variety of different approaches, including gene expression profiling and measurements of nutrient flux, to characterize the basal and activation-induced energetic requirements of naïve and phenotypically-defined subsets of human memory CD8+ T-cells.Findings: Profound metabolic differences were apparent as a function of differentiation status, both at rest and in response to stimulation via the T cell receptor (TCR). Of particular note, resting naïve CD8+ T cells were largely quiescent, but rapidly upregulated diverse energetic pathways after ligation of surface-expressed TCRs. Moreover, autophagy and the mechanistic target of rapamycin (mTOR)-dependent glycolytic pathway were identified as critical mediators of antigen-driven priming in the naïve CD8+ T cell pool, the efficiency of which was dampened by the presence of neutral lipids and fatty acids.Interpretation: These observations provide a metabolic roadmap of the CD8+ T-cell compartment in humans and reveal potentially selective targets for novel immunotherapies

    Superior control of HIV-1 replication by CD8+T cells is reflected by their avidity, polyfunctionality, and clonal turnover

    Get PDF
    The key attributes of CD8+ T cell protective immunity in human immunodeficiency virus (HIV) infection remain unclear. We report that CD8+ T cell responses specific for Gag and, in particular, the immunodominant p24 epitope KK10 correlate with control of HIV-1 replication in human histocompatibility leukocyte antigen (HLA)–B27 patients. To understand further the nature of CD8+ T cell–mediated antiviral efficacy, we performed a comprehensive study of CD8+ T cells specific for the HLA-B27–restricted epitope KK10 in chronic HIV-1 infection based on the use of multiparametric flow cytometry together with molecular clonotypic analysis and viral sequencing. We show that B27-KK10–specific CD8+ T cells are characterized by polyfunctional capabilities, increased clonal turnover, and superior functional avidity. Such attributes are interlinked and constitute the basis for effective control of HIV-1 replication. These data on the features of effective CD8+ T cells in HIV infection may aid in the development of successful T cell vaccines

    Exhausted Cytotoxic Control of Epstein-Barr Virus in Human Lupus

    Get PDF
    Systemic Lupus Erythematosus (SLE) pathology has long been associated with an increased Epstein-Barr Virus (EBV) seropositivity, viremia and cross-reactive serum antibodies specific for both virus and self. It has therefore been postulated that EBV triggers SLE immunopathology, although the mechanism remains elusive. Here, we investigate whether frequent peaks of EBV viral load in SLE patients are a consequence of dysfunctional anti-EBV CD8+ T cell responses. Both inactive and active SLE patients (n = 76 and 42, respectively), have significantly elevated EBV viral loads (P = 0.003 and 0.002, respectively) compared to age- and sex-matched healthy controls (n = 29). Interestingly, less EBV-specific CD8+ T cells are able to secrete multiple cytokines (IFN-γ, TNF-α, IL-2 and MIP-1β) in inactive and active SLE patients compared to controls (P = 0.0003 and 0.0084, respectively). Moreover, EBV-specific CD8+ T cells are also less cytotoxic in SLE patients than in controls (CD107a expression: P = 0.0009, Granzyme B release: P = 0.0001). Importantly, cytomegalovirus (CMV)-specific responses were not found significantly altered in SLE patients. Furthermore, we demonstrate that EBV-specific CD8+ T cell impairment is a consequence of their Programmed Death 1 (PD-1) receptor up-regulation, as blocking this pathway reverses the dysfunctional phenotype. Finally, prospective monitoring of lupus patients revealed that disease flares precede EBV reactivation. In conclusion, EBV-specific CD8+ T cell responses in SLE patients are functionally impaired, but EBV reactivation appears to be an aggravating consequence rather than a cause of SLE immunopathology. We therefore propose that autoimmune B cell activation during flares drives frequent EBV reactivation, which contributes in a vicious circle to the perpetuation of immune activation in SLE patients

    Immune Activation and CD8(+) T-Cell Differentiation towards Senescence in HIV-1 Infection

    Get PDF
    Progress in the fight against the HIV/AIDS epidemic is hindered by our failure to elucidate the precise reasons for the onset of immunodeficiency in HIV-1 infection. Increasing evidence suggests that elevated immune activation is associated with poor outcome in HIV-1 pathogenesis. However, the basis of this association remains unclear. Through ex vivo analysis of virus-specific CD8(+) T-cells and the use of an in vitro model of naïve CD8(+) T-cell priming, we show that the activation level and the differentiation state of T-cells are closely related. Acute HIV-1 infection induces massive activation of CD8(+) T-cells, affecting many cell populations, not only those specific for HIV-1, which results in further differentiation of these cells. HIV disease progression correlates with increased proportions of highly differentiated CD8(+) T-cells, which exhibit characteristics of replicative senescence and probably indicate a decline in T-cell competence of the infected person. The differentiation of CD8(+) and CD4(+) T-cells towards a state of replicative senescence is a natural process. It can be driven by excessive levels of immune stimulation. This may be part of the mechanism through which HIV-1-mediated immune activation exhausts the capacity of the immune system

    New Insights into Lymphocyte Differentiation and Aging from Telomere Length and Telomerase Activity Measurements

    No full text
    International audienceαβ CD8+, γδ, and NK lymphocytes are fundamental effector cells against viruses and tumors. These cells can be divided into multiple subsets according to their phenotype. Based on progressive telomere attrition from naive to late effector memory cells, human CD8+ T cell subsets have been positioned along a pathway of differentiation, which is also considered as a process of lymphocyte aging or senescence. A similar categorization has not been clearly established for γδ and NK cell populations. Moreover, the distinction between the aging of these populations due to cellular differentiation or due to the chronological age of the donor has not been formally considered. In this study, we performed systematic measurements of telomere length and telomerase activity in human αβ CD8+, γδ, and NK lymphocytes based on subset division and across age to address these points and better understand the dichotomy between differentiation and temporal aging. This approach enables us to position phenotypically distinct γδ or NK subsets along a putative pathway of differentiation, such as for CD8+ T cells. Moreover, our data show that both cellular differentiation and donor aging have profound but independent effects on telomere length and telomerase activity of lymphocyte subpopulations, implying distinct mechanisms and consequences on the immune system
    corecore