159 research outputs found

    DEFCON: high-performance event processing with information security

    Get PDF
    In finance and healthcare, event processing systems handle sensitive data on behalf of many clients. Guaranteeing information security in such systems is challenging because of their strict performance requirements in terms of high event throughput and low processing latency. We describe DEFCON, an event processing system that enforces constraints on event flows between event processing units. DEFCON uses a combination of static and runtime techniques for achieving light-weight isolation of event flows, while supporting efficient sharing of events. Our experimental evaluation in a financial data processing scenario shows that DEFCON can provide information security with significantly lower processing latency compared to a traditional approach

    Radiofrequency catheter ablation of supraventricular tachycardia substrates after mustard and senning operations for d-transposition of the great arteries

    Get PDF
    OBJECTIVES The purpose of this study was to determine the efficacy and risks of radiofrequency ablation of various forms of supraventricular tachycardia after Mustard and Senning operations for d-transposition of the great arteries. BACKGROUND In this patient group, the reported success rate of catheter ablation of intraatrial reentry tachycardia is about 70% with a negligible complication rate. There are no reports of the use of radiofrequency ablation to treat other types of supraventricular tachycardia. METHODS Standard diagnostic criteria were used to determine supraventricular tachycardia type. Appropriate sites for attempted ablation included 1) intraatrial reentry tachycardia: presence of concealed entrainment with a postpacing interval similar to tachycardia cycle length; 2) focal atrial tachycardia: a P-A interval ≤-20 ms; and 3) typical variety of atrioventricular (AV) node reentry tachycardia: combined electrographic and radiographic features. RESULTS Nine Mustard and two Senning patients underwent 13 studies to successfully ablate all supraventricular tachycardia substrates in eight (73%) patients. Eight of eleven (73%) patients having intraatrial reentry tachycardia, 3/3 having typical AV node reentry tachycardia, and 2/2 having focal atrial reentry tachycardia were successfully ablated. Among five patients having intraatrial reentry tachycardia (IART) and not having ventriculoatrial (V-A) conduction, two suffered high-grade AV block when ablation of the systemic venous portion of the medial tricuspid valve/inferior vena cava isthmus was attempted. CONCLUSIONS Radiofrequency catheter ablation can be effectively and safely performed for certain supraventricular tachycardia types in addition to intraatrial reentry. A novel catheter course is required for slow pathway modification. High-grade AV block is a potential risk of lesions placed in the systemic venous medial isthmus

    Measurement-based analysis of the dynamic performance of microgrids using system identification techniques

    Get PDF
    The dynamic performance of microgrids is of crucial importance, due to the increased complexity introduced by the combined effect of inverter interfaced and rotating distributed generation. This paper presents a methodology for the investigation of the dynamic behavior of microgrids based on measurements using Prony analysis and state-space black-box modeling techniques. Both methods are compared and evaluated using real operating conditions data obtained by a laboratory microgrid system. The recorded responses and the calculated system eigenvalues are used to analyze the system dynamics and interactions among the distributed generation units. The proposed methodology can be applied to any real-world microgrid configuration, taking advantage of the future smart grid technologies and features

    Dynamic performance of a low voltage microgrid with droop controlled distributed generation

    Get PDF
    Microgrids are small-scale highly controlled networks designed to supply electrical energy. From the operational point of view, microgrids are active distribution networks, facilitating the integration of distributed generation units. Major technical issues in this concept include system stability and protection coordination which are significantly influenced by the high penetration of inverter-interfaced distributed energy sources. These units often adopt the frequency-active power and voltage-reactive power droop control strategy to participate in the load sharing of an islanded microgrid. The scope of the paper is to investigate the dynamic performance of a low voltage laboratory-scale microgrid system, using experimental results and introduce the concept of Prony analysis for understanding the connected components. Several small disturbance test cases are conducted and the investigations focus on the influence of the droop controlled distributed generation sources

    A Semi-Distributed Electric Demand-Side Management System with PV Generation for Self-Consumption Enhancement

    Get PDF
    This paper presents the operation of an Electrical Demand-Side Management (EDSM) system in a real solar house. The use of EDSM is one of the most important action lines to improve the grid electrical efficiency. The combination between the EDSM and the PV generation performs a new control level in the local electric behavior and allows new energy possibilities. The solar house used as test-bed for the EDSM system owns a PV generator, a lead-acid battery storage system and a grid connection. The electrical appliances are controllable from an embedded computer. The EDSM is implemented by a control system which schedules the tasks commanded by the user. By using the control system, we define the house energy policy and improve the energy behavior with regard to a selected energy criterion, self-consumption. The EDSM system favors self-consumption with regard to a standard user behavior and reduces the energy load from the grid

    Cor triatriatum presenting as heart failure with reduced ejection fraction: a case report

    Get PDF
    Cor triatriatum is a rare congenital cardiac malformation and it usually refers to the left atrium. We report an unusual case of cor triatriatum in a 33 - year old woman presented with congestive heart failure caused by left ventricular systolic dysfunction

    PV self-consumption optimization with storage and Active DSM for the residential sector

    Get PDF
    With the rising prices of the retail electricity and the decreasing cost of the PV technology, grid parity with commercial electricity will soon become a reality in Europe. This fact, together with less attractive PV feed-in-tariffs in the near future and incentives to promote self-consumption suggest, that new operation modes for the PV Distributed Generation should be explored; differently from the traditional approach which is only based on maximizing the exported electricity to the grid. The smart metering is experiencing a growth in Europe and the United States but the possibilities of its use are still uncertain, in our system we propose their use to manage the storage and to allow the user to know their electrical power and energy balances. The ADSM has many benefits studied previously but also it has important challenges, in this paper we can observe and ADSM implementation example where we propose a solution to these challenges. In this paper we study the effects of the Active Demand-Side Management (ADSM) and storage systems in the amount of consumed local electrical energy. It has been developed on a prototype of a self-sufficient solar house called “MagicBox” equipped with grid connection, PV generation, lead–acid batteries, controllable appliances and smart metering. We carried out simulations for long-time experiments (yearly studies) and real measures for short and mid-time experiments (daily and weekly studies). Results show the relationship between the electricity flows and the storage capacity, which is not linear and becomes an important design criterion

    Neural network controller for active demand side management with PV energy in the residential sector

    Get PDF
    In this paper, we describe the development of a control system for Demand-Side Management in the residential sector with Distributed Generation. The electrical system under study incorporates local PV energy generation, an electricity storage system, connection to the grid and a home automation system. The distributed control system is composed of two modules: a scheduler and a coordinator, both implemented with neural networks. The control system enhances the local energy performance, scheduling the tasks demanded by the user and maximizing the use of local generation
    corecore