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Abstract—Microgrids are small-scale autonomous networks 

designed to supply electrical energy and heat. From the 

operational point of view, microgrids are active distribution 

networks, facilitating the integration of distributed generation 

units. Major technical issues in this concept are the system 

stability and protection coordination which are significantly 

influenced by the high penetration of inverter-interfaced 

distributed energy sources. These units usually adopt the 

frequency-active power and voltage-reactive power droop 

control strategy to participate in the load sharing of the 

microgrid. Scope of the paper is to investigate the dynamic 

performance of a low voltage laboratory-scale microgrid system, 

using experimental results. Several small disturbance test cases 

are conducted and the investigations focus on the influence of 

the droop controlled distributed generation sources. 

Index Terms--Distributed power generation, droop control, 

microgrid, transient stability. 

I. INTRODUCTION 

Driven by the global requirements for reliable, efficient 
and environmentally friendly electric power, the conventional 
power grid is gradually transformed to a modern one with 
enhanced functions, commonly described by the term "Smart 
Grids". Smart Grids are intelligently controlled, active, 
networks that facilitate the integration of distributed 
generation (DG) into the power system [1].  

The types of DG units differ in type and size, depending 
on the energy source used  [1] with significant differences in 
performance, power capacities and generation characteristics. 
Diesel and asynchronous generators are directly ac coupled to 
the grid, while others, either static or rotating are connected 
through power electronic converters, allowing great flexibility 
and controllability [1], [2].  

In this context, several techniques and power management 
strategies have been proposed in order to maximize the DG 
penetration and the utilization of the power system. The most 
important are active management, virtual power plants and 

microgrids [1]. The development of microgrids is a promising 
philosophy for the electric energy industry, it offers several 
advantages; the most significant being the reduction of 
electrical losses through closer load/ source proximity, the 
improvement of power quality, the reduction of greenhouse 
gas emissions and the increase of the reliability of the power 
system [2].  

In microgrids two control strategies of the DG units are 
usually adopted, peer-to-peer and master-slave control [1] - 
[3]. In the first case each DG unit has an equivalent status and 
can operate autonomously without any communication system 
by using real and reactive droop-based local controllers [3]. 
However, high penetration of droop controlled DG units in 
microgrids creates a number of issues, including the stability 
and the protection coordination of the microgrid when small 
or large disturbances occur, such as switching events and 
faults [5], [6]. 

Therefore, several research studies focus on the dynamic 
security assessment (DSA) and the evaluation of the transient 
performance of microgrids in order to improve the dynamic 
performance and increase the stability of the system [7] using 
mainly standard simulation tools and computational 
techniques [5] - [10]. Only recently some laboratory-scale 
microgrid systems have been developed [11] - [14], providing 
a reliable verification platform   and valuable tool for practical 
experimentation and research [11]. 

The scope of the paper is to investigate the dynamic 
performance of a low voltage (LV) microgrid, using 
experimental results from a 100 kVA laboratory-scale 
microgrid system, available at Strathclyde University in 
Glasgow, U.K. [14]. The analysis focuses on cases that the 
microgrid system is subjected to small disturbances, caused 
from changes in the operational state of the loads. Special 
emphasis is given on the influence of the droop controlled DG 
unit penetration on the dynamic performance of the microgrid 
system as well on the performance of each DG unit 
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individually. The microgrid is examined either in 
grid-connected or islanded mode of operation. 

II. LV LABORATORY-SCALE MICROGRID SYSTEM 

The laboratory-scale microgrid configuration is presented 
in Fig. 1. The three-phase, 400 V, 100-kVA microgrid can be 
split into two sub-microgrids, namely microgrid #1 and #2 and 
can operate both in grid-connected and islanded mode using 
the interconnection switch S1. A 1.21 per-unit (p.u.) 
inductance (L1) is included in the network to emulate 
stiff/weak network topologies.  
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Figure 1.  LV microgrid laboratory system configuration. 

A. Microgrid #1 

Microgrid #1 consists of Bus-3, Bus-4 and Bus-5, DG 
units DG1 and DG2, a static load bank and an induction 
motor. 

DG1 is a synchronous generator 2 kVA, 50-Hz, 400 V, 
1500 rpm with power factor 0.85, lagging directly ac 
connected to the microgrid. The prime mover is coupled to a 
DC motor, which is driven by a variable frequency drive. DG1 
can emulate the behavior of a diesel genset or a small CHP 
turbine by tuning properly the drive frequency properties. 
DG2 is an inverter interfaced generation unit of 10 kVA 
nominal power with power factor 0.8, lagging. DG units 
balance the power and provide frequency and voltage support 
in the microgrid using frequency – active power (f – P) and 
voltage – reactive power (V – Q) droop control. The f – P and 
V – Q droop characteristics of the two DG units are presented 
in Figs. 2a and 2b, respectively, showing that the inverter 
interfaced unit has a larger share on reactive power variations 
than the synchronous generator. The droop control strategy is 
adopted in both grid-connected and islanded mode of 
operation for the two DG units. 

The static load bank #1 is composed by a 64-step variable 
resistance and inductance with nominal power 10 kW and 

7.5 kVAr, respectively. The 2.2 kW, 50-Hz, 400 V, 0.87 
lagging, induction motor is used as a dynamic load model and 
is also driven by a variable frequency drive. 

B. Microgrid #2 

Microgrid #2 consists of DG3, which is a 80 kVA, 50-Hz, 
400 V and 1500 rpm synchronous generator, driven by a 
software model emulating a slow prime mover, such as a 
steam-turbine [14]. The 80 kVA generator is controlled as a 
shared generator together with the rest DG units in a 
peer-to-peer operation mode. The microgrid system can 
operate also as a power island, when switch S1 is open and S2 
is closed, allowing microgrid #2 to connect to the microgrid 
system. In island mode each DG unit is controlled based on 
the local frequency and voltage, using the corresponding f – P 
and V – Q droop characteristics. In this scenario DG3 has the 
main load sharing part compared to DG1 and DG2, due to its 
higher power capacity. 

Finally, the nominal active and reactive power of the 
256-step static load bank #2 is 40 kW and 30 kVAr, 
respectively. 
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Figure 2.  Droop characteristics of DG1 and DG2 for a) real power (f - P) 

and b) reactive power (V - Q) 

III. LOAD SHARING 

The objective of this section is to investigate the dynamic 

performance and the participation in the load share of each 

DG unit, while microgrid # 1 operates in grid-connected and 

in islanded mode. 

A. Grid-connected mode 

The grid-connected mode of operation is examined, while 

microgrid #1 is connected to a “stiff” and also to a “weak” 
utility supply grid, using the 1.21 p.u. inductor L1. In Figs. 3 

and 4 the active and reactive power share for the stiff grid are 

presented, while in Figs. 5 and 6, the corresponding responses 

are shown for the weak grid case. In both scenarios the total 

power of the static and the dynamic load is 7.1 kW and 3.8 

kVAr, respectively; while a 30 % increase in the static 

load #1 is applied. 

Considering the active power at the steady-state prior to 

and after the disturbance at 226 ms, both DG units supply the 

microgrid with constant active power, according to the f – P 

droop, since in both grid topologies the frequency before (f-) 

and after (f+) the disturbance acquires the same value. 
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Therefore, any change in the load demand in both cases is 

accommodated by the utility supply, which provides 72 % 

and 78 % of the microgrid active power demand in the 

steady-states prior to and after the disturbance, respectively.  

In the transient period subsequent to the disturbance for 

the case of the weak grid in Fig. 5, Bus-3 active power and 

frequency present an oscillation, due to the dynamic response 

of DG1. The oscillation in DG1 is due to the effect of the 

synchronous generator electromechanical mode, with a 

frequency of approximately 3 Hz, being the dominating 

system mode [5],  [6]. The damping oscillation in DG2 

response follows the Bus-3 frequency oscillation, due to the 

corresponding droop characteristic. This oscillatory nature of 

the DG dynamic response appears only in weak grid 

topologies, e.g. a connection via long interconnection lines 

 [15]. This is attributed to the performance of DG1 during the 

load change, which reduces its speed by releasing kinetic 

energy  [6],  [15] causing a variation in the network frequency 

transient response, as shown in Fig. 5b.  
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Figure 3.  DG active power share for the stiff grid. 
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Figure 4.  DG a) reactive power share for the stiff grid and b) Bus-3 voltage. 

  In the case of the stiff grid the voltage variation is less 

than 1%, thus the DG reactive power output remains 

practically constant prior to and after the disturbance. 

However, in the weak grid topology a voltage drop of 

approximately 4 V is recorded at Bus-3, due to the influence 

of L1. Therefore, both DG units adjust their reactive power 

output, contributing to the microgrid reactive power 

compensation  [5], according to the V – Q droop 

characteristics with DG2 having a larger share in the reactive 

power demand. Initially 68 % of the reactive power is 

supplied by the grid, while after the load change, 60 % is 

provided, due to the participation of the DG units in the 

reactive power share.  
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Figure 5.  DG a) active power share for weak grid and b) bus frequency.  
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Figure 6.  DG a) reactive power share for the weak grid and b) Bus-3 

voltage. 

B. Islanded mode 

In this scenario switch S1 is open and microgrids #1 and 

#2 are connected in islanded mode. All DG units and loads 

are in the same operational state as in the grid-connected 

case, while static load #2 is 17 kW and 9 kVAr. A 30% 

increase of the load #1 power is applied and the active and 

reactive power dynamic responses of the DG units are shown 

in Figs. 7 and 8, respectively. The majority of the active 

power is picked up by DG2 and DG3 units, according to their 

droop characteristics. In the reactive power sharing DG2 

takes over 67 % of the reactive power increase, due to the 

shallower V – Q slope. DG1 participates with less than 7 % in 

the total share of the active power change. DG3 regulates the 
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power flow in the island by adjusting its power output, since 

the DG3 active and reactive responses practically follow the 

corresponding of Bus-3, as shown in Figs. 7b and 8b. 
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Figure 7.  Active power share for a) microgrid #1 and b) microgrid #1 c) 

Bus-3 frequency. 
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Figure 8.  Reactive power share for a) microgrid #1 and b) microgrid #1 c) 

Bus-3 frequency. 

The duration of the transient period of the disturbance is 

about 3 s and is significantly longer compared to the 

grid-connected case. In this scenario a single control area 

power system operation can be assumed  [15]. The oscillatory 

damped response of frequency is due to the release of DG3 

kinetic energy, thus reducing its speed and the system 

frequency, presented in Fig. 7c. The oscillations of DG1 and 

DG2 active power responses are due to the frequency 

variation at Bus-3, according to the corresponding f – P droop 

characteristics, showing that the influence of the drooped 

controlled DG2 on the active power response is significant. 

The oscillation frequency is 1.5 Hz [6], due to the greater 

mass of DG3, compared to DG1, which determines the 3 Hz 

oscillation in the grid-connected mode. The peak in the 

reactive power dynamic responses of the two generators DG1 

and DG3 are due to the influence of the AVR. 

IV. INFLUENCE OF DROOP CONTROLLED UNITS 

The influence of the droop controlled units penetration on 

the dynamic responses of a microgrid is investigated, in the 

case of 50 % load increase. The weak grid-connected and 

islanded microgrid configurations are examined, with DG2 

producing 0 kW in case #1 and in 1 kW case #2 with nominal 

power factor. 

A. Grid-connected mode 

In Figs. 9 and 10 the active and reactive power share of the 

DG units are presented, respectively, as well as the Bus-3 

frequency and voltage responses. It is shown that the 

influence of the increased penetration of the droop controlled 

DG2 on the active power and frequency dynamic response of 

the microgrid is not significant, since the dominating 

electromechanical mode is slightly affected by the f – P droop 

of the inverter based DG units [6]. 
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Figure 9.  Active power share for a) microgrid #1 and b) Bus-3 c) Bus-3 

frequency. 
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Figure 10.  Reactive power share for a) microgrid #1 and b) Bus-3 c) Bus-3 

voltage. 

In Fig. 10b the ripple in the microgrid reactive power 

dynamic response is due to the combined effect of DG1 AVR 

and the control of DG2. In case #2 the voltage drop on Bus-3 

is lower about 5 V than in case #1, since DG2 supports the 

system voltage, injecting reactive power in the microgrid, 

according to the V – Q characteristics. 
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B. Islanded mode 

In the islanded mode of operation the active power 

dynamic response of microgrid #1 is significantly affected by 

DG2. DG2 has no inertia, thus it is affected by the system 

frequency variation, according to the f – P droop 

characteristics. On the contrary in case #1, there is no ripple 

in the active power dynamic response at Bus-3, since DG1 

with inertia presents low sensitivity to the system variations, 

having an insignificant effect on the total active power 

response. 

Considering the reactive power in case #2 the dynamic 

response of DG1 is less severe than in case #1. This is 

attributed to the lower voltage drop at Bus-3, due to the 

additional reactive power offered by DG2. 
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Figure 11.  Active power share for a) microgrid #1 and b) Bus-3 c) Bus-3 

frequency. 
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Figure 12.  Reactive power share for a) microgrid #1 and b) Bus-3 c) Bus-3 

voltage. 

V. CONCLUSIONS 

In this paper, the dynamic performance of a laboratory 

scale microgrid is examined with special emphasis on the 

influence of the droop controlled units. The analysis is 

implemented, using experimental results. 

In grid-connected operation it is shown that transients 

occur on the mircogrid response only in the case of weak 

grids, due mainly to the influence of synchronous generators. 

Inverter interfaced units participate in the examined topology 

mainly on the reactive power share, according to their droop 

characteristics. 

On the contrary, in the islanded mode of operation, the 

droop controlled inverter interfaced units influence 

significantly the dynamic responses of both the active and 

reactive power of the microgrid, since their behavior depends 

strongly on the frequency variation and the voltage drop on 

the microgrid buses. 
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