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A B S T R A C T 

In this paper, we describe the development of a control system for Demand-Side Management in the res­
idential sector with Distributed Generation. The electrical system under study incorporates local PV 
energy generation, an electricity storage system, connection to the grid and a home automation system. 
The distributed control system is composed of two modules: a scheduler and a coordinator, both imple­
mented with neural networks. The control system enhances the local energy performance, scheduling the 
tasks demanded by the user and maximizing the use of local generation. 

1. Introduction 

Nowadays, there is an increasing electricity demand and 
an increasing cost of the raw materials. It is necessary to do a bet­
ter use of the electricity through proper management. Govern­
ments are passing laws to improve this management by means 
of Demand-Side Management (DSM). Demand-Side Management 
has been identified as one of the main strategies to be promoted 
in order to guarantee security of electrical energy supply in the 
European Union [1]. However, there is not a commonly accepted 
definition for the term Demand-Side Management (DSM). In this 
paper, DSM is defined as the actions that influence the way 
consumers use electricity in order to achieve savings and higher 
efficiency in energy use [2]. 

The combination of DSM with an automatic control of the 
household demand leads to a new concept called Active Demand-
Side Management (ADSM) [3,4]. ADSM allows to modify the demand 
profile in order to reduce the stress of the electrical system, 
maximize consumption when the resources are available and 
decrease congestion situations. There are several benefits of the 

ADSM, such as reduction of losses and load shedding in the grid, 
reduction in energy bills, demand curve smoothing or reduction in 
the production cost [5,6]. Moreover, there are three main strategies 
to implement ADSM [7]: (i) peak clipping, (ii) valley filling and (iii) 
load shifting. However, as stated in Ref. [5], ADSM have several chal­
lenges to overcome such as the lack of ICT infrastructure, inappropri­
ate market structure or lack of incentives. Furthermore, ADSM has to 
guarantee the comfort of the users and their preferences without 
changing their behavior. 

ADSM can be implemented based on different criteria, such as the 
price of the energy, maximization of the self-consumption or limit­
ing the maximum power between others. The term self-consump­
tion on distributed generation electric networks focuses on the 
usage of the own generated energy, while the energy provided by 
the grid remains an optional generator or consumer [3]. This paper 
focuses on ADSM with a load shifting strategy to maximize self-
consumption. 

Different techniques to implement DSM have been proposed in 
the literature [5]: load shifting, direct-load control, load limiters, 
interruptible loads, frequency regulation, time-of-use pricing or 
demand bidding between others. However, most of these proposals 
have not yet been implemented in real environments. Moreover, 
typically these studies focus on macroscopic impacts without 
addressing their implementation at the lower level. Notwithstand­
ing, some researches focusing on designing real implementations 
can be found. In Ref. [8], the authors implement a load control 



frequency and guarantee that the fluctuations of the load fre­
quency converge to a range. In Ref. [9] a direct-load controller 
based on programmable logic is described, while in Ref. [10] the 
authors make use of a fuzzy logic controller. Some approaches 
try to maximize self-consumption by managing the flows of energy 
in the industrial sector [11,12]. While others focus on the residen­
tial sector [3,13]. In the work presented by Ref. [14], measurement 
data of seven households in Belgium have been used to acquire 
relationships to dimension storage packages for grid connected 
PV panel installations. A methodology for the evaluation of PV ar­
ray orientation, ADSM and storage to improve load matching has 
been presented in Ref. [15]. The method was applied in simulations 
to high-latitude data from detached houses and apartments in 
Sweden to observe their impact. Furthermore, Artificial Neural 
Networks (ANNs) have been extensively applied in energy systems 
[12,16,17]. ANNs have characteristics of optimization, generaliza­
tion ability, adaptability, a legacy of information processing, failure 
tolerance and low power consumption [18]. In Ref. [19] the author 
presents several applications of ANNs in energy problems, such as 
modelling and designing a solar steam generating plant, estimation 
of a parabolic-trough collector's intercept factor and local concen­
tration ratio, modelling and performance prediction of solar water-
heating systems, between others. 

In this paper we implement a distributed ADSM controller 
based on ANNs to maximize self-consumption in the residential 
sector. The distributed control system presented is made up of sev­
eral ANNs located at the different appliances in a house provided 
with local PV energy generation. The appliances self-organize in 
a distributed way and a coordinator corrects their outputs in order 
to enhance self-consumption. It is expected that our system would 
schedule household tasks for the next day, coordinating the user 
preferences and the predicted generated electricity, so that self-
consumption could be maximized. Thus, the system acts in an al­
most transparent way to the user and it is in charge of activating 
the household tasks when the PV generator produces its maximum 
of energy, leading to an increase of the energy efficiency. 

The remainder of this paper is as follows. Section 2 describes 
the electrical energy system. In Section 3, the implementation of 
the neural controller and its training is described. Section 4 pre­
sents the postevaluation of the neural controller implemented. Fi­
nally, Section 5 concludes this paper. 

2. System under study 

The ADSM system has been developed in a real solar house 
named "Magic Box" (see Fig. 1). The house integrates sustainable 
elements based on renewable energies, self-sufficiency energetic 
methods, bioclimatic architecture and recycled construction 
materials [20]. It includes PV generation, electricity storage through 

(a) 
Fig. 1. (a) Birds eye view and 

batteries, a set of automated appliances and a connection to the grid 
[21]. 

The PV installation consists of single-crystalline PV generators 
distributed in four south-oriented surfaces with different inclina­
tions. The energy is collected in six arrays with a total nominal 
power of 7.2 kWp. In addition, the electrical system embodies a 
battery energy storage system of 36 kWh. In a grid-connected 
installation, batteries are used to improve the electrical behavior 
by controlling the maximum consumed and generated power at 
different hours or ensuring the electrical supply when a grid break­
down occurs [22-24]. In this case of study, the battery system 
stores the excess of PV generation and supplies it to the loads when 
there is not enough local generation. This operation decreases the 
exported and imported electricity from the grid. 

"Magic Box" includes typical electrical appliances of a highly 
electrified home: washing machine, dryer, dishwasher, refrigera­
tor, cooking appliances, lighting, computers and entertainment 
appliances. The appliances are integrated in a home automation 
system, which allows them to be monitored and controlled by a re­
mote system [3]. Some appliances involve an instantaneous use 
because of the user demand (e.g. lights, TVs, computers) while oth­
ers can be time-shifted. For this reason, we have defined two types 
of appliances based on their operation mode: 

• Deferrable loads, as the demand that can be displaced along the 
day. In this case, the user set up time limits between which task 
has to be carried out. E.g.: running the washing machine 
between 10:00 h and 16:00 h. 

• Non Deferrable loads, as the demand that is not controllable. It 
represents the instantaneous appliances, like lights or TVs 
or the continuous consumption, like the fridge or control 
computers. 

All the elements of the electrical system are connected to an AC 
bus (see Fig. 2). This connection allows the energy exchange 
between the different devices without an explicit hierarchy; there­
fore, it increases the system scalability. Notice that in our system, 
the battery stores only the PV energy excess and it gives its stored 
energy solely to the loads. Therefore, there are no energy ex­
changes between the battery storage system and the grid. 

Based on this schematic flow of energy, the ADSM system tries 
to reduce the consumption of electricity from the grid and to max­
imize the consumption from the PV generator and the battery 
system. 

3. System implementation 

As aforementioned, the main objective of the ADSM system is to 
maximize self-consumption. Therefore, the ADSM system must 

south frontage of "Magic Box". 
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Fig. 2. Topology of the electrical system. 

schedule different appliance tasks commanded by the user 
throughout the day. Only deferrable appliances can be controlled 
by the system. However, deferrable and non deferrable appliances 
are taken into account to analyze and validate the system. 

To allow the ADSM system to create the scheduling, the user 
must provide a list with the appliances to be executed within the 
next 24 h. This list consists of the name of the appliance together 
with the program variables and the time limits. A summary of 
these variables is shown in Table 1. Note that the user is involved 
in the ADSM system and he offers flexibility by giving time limits 
to the appliances which must be executed. 

Before starting, the ADSM system must obtain the tasks that the 
user wants to execute and the generation forecast. Once all the 
information is ready, the system starts scheduling the different 
tasks according to a specified energy criterion, maximizing self-
consumption in our case. Note that the ADSM system does not re­
duce the energy consumption, but moves the tasks throughout the 
day favoring the use of the generated energy. 

3.1. System inputs 

• User information. The user establishes the tasks he wants to 
carry out in the next 24 h. A task consists of selecting the appli­
ance, its program to execute and the temporal interval in which 
the user would like to do the task, Tk = {Ak, Atk}, where Tk is the 
feth task to schedule, Ak is the appliance for the feth task, which 
contains the variables of the program (temperature, spin revo­
lutions, etc.) and its duration, and Atk = (tkstarb tkend) is the tem­
poral interval of the feth task within which the user wants to 
execute it. Ak is composed of the consumed power {PAMX and 
the duration of the program (AtAk)Ak = {PAJO £¿AX¡- These data 
are located at each aplliance. An example of the information 
provided by the user is shown Fig. 3. 

• Generation forecast. It is a forecast of the expected generated 
power for the next 24 h, (Ppv)- The forecast consists of a vector 
of 24 values, one for each hour of the day. PPVh is the hth fore­
casted hour of generated power [25]. 

Table 1 
Appliances variables supplied by the user to the control system for its scheduling on 
the next 24 h. 

Appliance Variable 1 Variable 2 

Washing machine 
Dryer 
Dishwasher 
Oven 
Hood 
Refrigerator 
Freezer 
Air conditioning 

Temperature 
Spin revolutions 
Washing parameter 
Temperature 
Fan speed 
Temperature 
Temperature 
Temperature 

Spin revolutions 
Not used 
Not used 
Cooking time 
Light intensity 
Not used 
Not used 
Cooling time 

Washing m. time limit 

Dishwasher time limit 

_ Dryer time limit 

^ 
Oh 4 h 6 h 8 h 16 h 2 3 h 2 4 h 

Fig. 3. Example of user time constrain for three different tasks. 

3.2. System architecture 

The architecture of the ADSM system consists of three modules 
(see Fig. 4): 

• Scheduler. It is responsible for setting the time to execute the 
task Tk taking into account the user constraints (Atk), and the 
generation forecast (PPV,o-23)- It is a distributed layer; a neural 
controller is present in each appliance. Each appliance control­
ler receives information about its corresponding task to be exe­
cuted. Each controller outputs the time at which the task has 
been scheduled. Therefore, the output of this layer is a vector 
of scheduled times (ts). 

• Coordinator. It receives information from all the controllers of 
the scheduling layer. It checks, and modifies if necessary, that 
the tasks to be carried out do not overlap. Therefore, it requires 
the vector of scheduled times (ts), and the time duration of each 
task (AtAtk) as inputs. The output of this layer is a vector consist­
ing of the coordinated times (tc). 

• Actuator. It performs the communication between the coordina­
tion layer and the physical appliances. The actuator starts the 
tasks at the time indicated by the coordinator (tc). 

3.2.1. System controller 
The controller consists of several Multilayer Perceptrons (MLPs) 

as ANNs [18]. Each MLP have three layers: input, hidden and out­
put layer. The coordinator consists of one MLP, while the scheduler 
is composed of as many MLPs as tasks to schedule. Therefore, each 
appliance schedules the time at which the task must be executed. 
However, because of this modularity, the scheduling time of differ­
ent appliances could overlap in the time domain and the instant 
power demand could be outsize. For this reason, it is necessary 
the coordinator checks, and modifies if necessary, that the tasks 
do not overlap. 

In this paper, we use a Genetic Algorithm (GA) to adjust the free 
parameters of the MLPs mapped into a genotype [26]. These free 
parameters are: (i) input gains (g¡n,¡), (ü) neural weights (w,j) and 
(iii) bias (0,-). The GA is used because it has the potential to produce 
a global minimum of the search space and thereby avoid local min­
ima. It consists of evolving a population of genotypes according to a 
fitness function. In our controllers, the population consists of 
100 genotypes. Each genotype is a vector of genes in which the gains, 
weights and bias are mapped and whose length (gL) is expressed in 
the following equation. 

gL = Cin + 0h i + ©our + Whi + W„, (1) 

where Gin is the number of gains in the input layer, 0hi is the num­
ber of bias of the hidden layer, 0out is the number of bias in the out­
put layer, Whi is the number of synaptic weights in the hidden layer, 
and Wout is the number of synaptic weights in the output layer. 

The gene values are chosen in the range [0,1]. Genotypes of the 
first generation are generated randomly. The following generations 
are produced by a combination of selection with elitism, crossover 
and mutation. For each new generation, the five individuals with 
the highest fitness values (called "elite") are retained unchanged. 
The reminder of the new generation is generated by fitness-pro­
portional selection from the individuals of the previous generation. 
In addition, the new genotypes are subjected to a simple crossover, 
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Fig. 4. Control architecture of the ADSM system. 

in which two individuals exchange their genes in one point from a 
random position. Finally, a mutation process occurs. Every gene of 
every genotype changes its value randomly with a probability of 
p = 0.05. The fitness values are assigned to each individual accord­
ing to a fitness function built to the specific optimization problem, 
one to tune the parameters of the ANNs of the scheduler and an­
other one for the ANN of the coordinator. Finally the components 
of the genotype vector are mapped to produce the MLP parameters 
within the following ranges: input gains g¡n,¡e[0,1], weights 
w,j e [-5, 5] and biases 0¡ e [-5, 5]. 

3.2.2. Scheduler 
The scheduler selects the time at which the tasks required by 

the user must be executed, maximizing self-consumption and giv­
ing priority to the user. Therefore, the inputs of the scheduler are 
the time limits of the tasks selected by the user (Atk) and the gen­
eration forecast (Ppv). The scheduler controllers, once the inputs 
are established, start scheduling each task independently (see 
Fig. 5). 

The architecture of the scheduler, as explained in Section 3.2.1, 
consists of as many homogeneous MLPs as tasks established by the 
user. One scheduler MLP is shown in Fig. 6. Each MLP is composed 
of 26 neurons in the input layer (xin = {tkMart, tKend, PPVt0 ¿ W B } ) , 
13 neurons in the hidden layer and 1 neuron in the output layer 
(y4o = U,k)- Each neuron is governed by the following equation. 

(2) 

with a{x) = -

* • U.l 

PpV.O-23 

ANN 
T2 

ANN 
T K 

• * • t,,K 

where Nin is the number of inputs of the neuron and y¡ are the out­
puts of the neurons of the previous layer. 

As aforementioned, the free parameters of the MLP are mapped 
into a genotype. In this case, the number of genes of each genotype 
is gL = 26 + 13 + l+ (26 13) + (13 1) = 391genes. The fitness 
function of the GA is built to achieve the objective of maximizing 
self-consumption. Therefore, the fitness function evaluates how 
close is the MLP output (tsk), from the maximum of the forecasted 
generated power within the time interval provided by the user (A 
tk), for K tasks and L forecasted generation power profiles. The 
mathematical expression of the fitness function can be observed 
in the following equation. 

FFl,\Lk,P< = k,l Ls,fe, J PV 

if ts¡k $ Atk 

t^P'py) i f t^eAtk 

Í 0 if tsM < yk) - 2 

^ - 0 . 5 iiyKl-2^ts.k<yKl-\ 

withg(tsM,P'P 
"py \tsjt. 

'PV ('•s.k. 

0.25 if yK¡ - 1 > ts¡k < yK¡ 

= 1 if ts,k = yK, 

-0 .25 ifykl<tSik^ykl + i 

% ^ - 0 . 5 ifyKl + \<tsM^yKl + 2 

o if ts,k > ykj + 2 

(3) 

where rk,i is the maximum value of the forecasted generated power 
inside the time interval provided by the user (Atk) for the /* 
profile, yk¡l is the time at which rk,i occurs, and PJ^tsk) is the /* 
forecasted generation power value for tStk. Remember that, tStk is 
the scheduling time of the kth task and Atk is the temporal interval 
of the user for the kth task. 

Finally, the fitness value for one individual (FFs
¡nd) is the arith­

metic mean of all the situations (K tasks and L forecasted genera­
tion power profiles) in which the genotype was evaluated (see 
Eq. (4)). 

FFL = KL (4) 

Fig. 5. Scheduler architecture. 

The dataset for the evolution of the scheduler MLPs was com­
posed of L = 142 forecasted generation power profiles of the year 
2009, (/ e {0 141}), and the time preferences of the user for each 
task where intervals of Atk = 4 h which vary along the day in steps of 
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Fig. 6. Structure of one ANN of the scheduler. 

2 h (k e {0 11}) were selected. The evolution was carried out on 
different steps. Firstly, the system was evolved with 10 profiles of 
the 142 available. Once it reached a steady-state value, we stopped 
the evolution. Then, the evolution was restarted with 30 profiles 
for the individuals of the last generation evolved with 10 profiles. 
After reaching again a plateau, we stopped the evolution. We re­
peated the same process with 50,90 and 142 profiles. For the differ­
ent steps of the evolution, we only changed the number of forecasted 
generation power profiles, maintaining the time preferences of the 
user explained before. The results of the evolution are shown in 
Table 2. The maximum number of generations selected was 
10,000, but the algorithm reached a steady-state before accomplish­
ing the total number of generations. In addition, the fitness value, to 
which the GA converges, is a compromise value for all the forecasted 
power profiles and all the temporal intervals defined by the user. The 
best individual of the las generation evolved with 142 profiles was 
set as the parameters of the scheduler MLPs. 

3.2.3. Coordinator 
As aforementioned, the aim of the coordinator is that tasks do 

not overlap during their execution. The coordinator will try to fit 
for the closest scheduled times with no overlap. The inputs for 
the coordinator are the scheduled times (ts) and the duration of 
each task, (AtAJi). The output of the coordinator is a vector of time 
references at which the selected tasks must be executed (tc). 

The coordinator is composed of one MLP whose number of 
neurons depends on the number of tasks. So that, the input layer 
has 2 K neurons, with xin = {ts>1> AtA1, ts>2> AtA<2 ts,K, AtAJ<}, 
the hidden layer has K + 1 neurons and the output layer has K 
neurons, where K is the number of tasks (see Fig. 7). The ANN is 
governed by Eq. (5) and its outputs (y, = tc/} i e {3/<+ 2 AK+ 1}, 
j e {1 /<}) create a vector of coordinated times (tc). 

Table 2 
Results of evolution for a scheduler ANN. 

N" profiles Best fitness Generations 

10 
30 
50 
90 

142 

0.9091740680 
0.9172684079 
0.9027720441 
0.8171219180 
0.7026183810 

2189 
996 
287 

2189 
847 

2K i 
neurons 

*• tc.l 

**tc.2 

»"tc,K 

Input 
layer 

Hidden 
layer 

Output 
layer 

Fig. 7. ANN structure of the coordinator. 
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with a(x) 
1 

where Nin is the number of inputs of the neuron, y¡ is the output of 
the previous layer neurons, and l¡ e 0,1 is an inhibitor signal ex­
plained hereafter. 

The inhibitor signal is introduced in the ANN to give modularity 
to this network. Modularity is very convenient when the number of 
tasks to be executed is unknown. However, an ANN with an unde­
fined structure cannot be evolved with the characteristics of the GA 
presented in this paper. Thus, the coordinator is implemented to 
handle seven tasks (/<=7), which is the maximum number of 
deferrable appliances in "Magic Box" (see Section 2). In the case 
that not all the seven tasks are activated, the remaining entries 
are zero. The inhibitors have been established between the hidden 
layer and output layer to inhibit the connection of the entries 
which are zero. Therefore, the neurons in the hidden layer, as­
signed to the tasks that are not going to be coordinated, do not 
interfere in the calculation of the coordinated time for the active 
tasks. 

As previously explained, the length of the coordinator 
genotype is gL(K) = 2 •/<+(/<•+ 1) + (2 • K(K+ 1)) + ((/<+ 1) • K) 
= 3 • K2 + 7 • I<+ 1. In the evolution of the coordinator, the ANN is 
evolved with K= 7 tasks; therefore, the length of the genotype is 
gL(7) = 3 • 72 + 7 • 7 + 1 = 197 genes. 

The evaluation of each genotype is made according to a fitness 
function developed to fulfill the objective of spreading the tasks in 
order not to overlap in the time domain. The fitness function for 
this evolution consists of two functions: one function ÍFF1 km) 
evaluates the overlapping between the coordinated outputs, while 
the second one yFFc

2 km\ measures the similarity between the ANN 
outputs (coordinated times tc) and its inputs (scheduled times ts). 
The mathematical expression of each function is shown in Eqs. (6) 
and (7). 

r M ifo<M<£ 
if I< | t / i l< ! 
if K M 

(6) 
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Fig. 8. (a) Example of three overlapped tasks provided by the scheduler, (b) Result of the coordination layer for the same tasks. 

where S is the maximum program duration of all the tasks, 
(3 = max(AtAtk); k e {1 K}), and iyi is the absolute value of 
the difference between the outputs of the ANN (|i^| = \tck - tc¿|, 
j e { l K};jVfc). 

r r 2 km 

0 

h-
h-

|t/2| + l 

\tf*\+\ 

i f 0 < | r / 2 | < § 

if | < | t / 2 | < á 

if s < |t/2| 
(7) 

where tp is the absolute value of the difference between a task 
output and its corresponding input (|fp| = ts,k - tc,k\, k e {0 K}). 

The final fitness value of one individual (FFc
ind) is presented in 

the following equation. 

fFLr M'2^ K 
2 

W- 1) Eff5 E f f 2 (8) 

where K is the number of tasks and JVÍ is the number of cases of the 
evolution explained hereafter. 

The dataset of the coordinator during the evolution consists of 
the duration of seven tasks, one for each controllable appliance 
of "Magic Box" (A£>i = {At/i i, AtA2 At/i,7}), which remains con­
stant during the entire evolution process, and the scheduled times 
(ts = {tsl, ts,2 ts,7}) whose values for the evolution vary from 10 
a.m. to 8 p.m, selected as the temporary interval of sunny hours. 
Therefore, M is the number of combinations of the seven scheduled 
times along the 10 h, that is M = 107 combinations. 

As can be deduced, the coordinator evolution evaluates if the 
outputs of the ANN meet the goal of not being overlapped and 
resembling as much as possible to the inputs. In this way, the best 
fitness value, which has been achieved for 10,000 generations, was 
0.38. Notice that the best fitness value reached is far from the max­
imum fitness value {max{FFc

ind} = 1). This is because of the geo­
metric mean of FF\ km a n d FFC

2 km shown in Eq. (8). However, we 
observe that in average each of them achieves a value of 0.62, being 
a compromise of all the M = 107 combinations defined in the evo­
lution. Fig. 8 shows an example of the separation of the tasks for 
a selected case of the evolution. 

4. Postevaluation 

In this section, we evaluate the output of the scheduler, the 
output of the coordinator and the result of the complete ADSM 
control system. The dataset used to evaluate the system consist 
of forecasted generated power profiles of the year 2009 not used 
in the evolution (223 profiles), and three tasks (7"i, T2 and T3) 
whose time intervals (At-i, At2 and At3) defined by the user are 
composed of 4 h which varies along the day in steps of 2 h. The 
tasks defined are: 

• Task 1: a washing machine with program 1, whose variables are 
90 °C and 1200 r.p.m. (Ai), and executed for all the time inter­
vals defined previously (7"i = {Ai, Ati}). 

Table 3 
Results of the evaluation of the scheduling layer. 

ts.k - Jk,l %,k-fk,l\ < lh %,k-lk,l\ >1h 

Scheduler 87% 10% 3% 

Table 4 
Results of the evaluation of the coordination layer. 

Right At t <10min 

Coordinator 89% 7% 

Art > 10 min 

4% 

• Task 2: a dryer with program 3, whose variable is 1200 r.p.m. 
(A2), and executed for all the time intervals defined previously 
(r2 = {A2, At2}). 

• Task 3: a dishwasher with program 5 (A3), and executed for all 
the time intervals defined previously (I3 = {A3, At3}). 

For the aforementioned dataset, the scheduler situates the exe­
cution time for each of the three appliances inside the time con­
strains of the user in all the cases. However, it locates the 
execution time at the time when the maximum of the forecasted 
generation power profile occurs in 87% of the cases. In 10% of the 
cases it was deviated less than one hour from the maximum and 
in the remaining 3%, it was deviated in more than one hour (see 
Table 3). 

The dataset used for the validation of the coordinator was com­
posed of the duration of the three tasks described above (AtA1, Atn 
t/1,2 and At/y), and the vector of the scheduled times obtained from 
the scheduler. The results of the evaluation are as follows: the 
tasks were spread in the time domain complying with the tempo­
rary interval constraints set by the user, in 89% of the cases. Only in 
7% of the cases the tasks were deviated from the temporary inter­
val in less than 10 min and in the remaining 4%, tck was deviated 
from the temporary interval in more than 10 min (see Table 4). 

Finally the verification of the whole system was made to ex­
plore the combination of the two modules. The system was suc­
cessful in both the scheduler and coordinator modules in an 85% 
of the situations. The remaining 15% had failures in the scheduler, 
the coordinator or both (see Table 5). 

Table 5 
Results of the evaluation of the whole system. 

Right scheduling/right 
coordination 

Failure scheduling/failure 
coordination 

Whole 85% 
system 

15% 
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Fig. 9. Example of the whole process of the ADSM system: (a) inputs for the ADSM system, (b) response of the scheduler and (c) final response of the ADSM system. 

To better understand the behavior of the system, an example is 
described in what follows. Let us assume the tasks proposed by the 
user are the following: 

• Task 1: a washing machine with program 1, whose variables are 
90 °C and 1200 r.p.m. (Ai), with an execution time interval (At-i) 
defined between 12 a.m. and 4 p.m. (7"i = {A, At{\). 

• Task 2: a dryer with program 3, whose variable is 1200 r.p.m. 
(A2), with an execution time interval (At2) defined between 
10 a.m. and 7 p.m. (7"2 = {A2, At2}). 

• Task 3: a dishwasher with program 5 (A3), with an execution 
time interval (At3) defined between 8 a.m. and 8 p.m. 
(7-3 = {A, At3}). 

In Fig. 9a, the time intervals and PV profile inputs to the neural 
controller can be observed. In Fig. 9b, the response of the scheduler 
is shown. In this case the scheduled times of the three tasks are the 
same because the time intervals provided by the user are wide 
open. Therefore, the scheduler controllers select the same time 
for the task execution (close to the maximum of the forecasted 
generation power profile). Finally, Fig. 9c shows the result after 
coordination. The coordinator has separated the scheduling time 
of the three tasks to avoid overlapping. The coordinated times 
are the times in which the tasks are going to be executed the next 
day. Note that the three tasks are under the PV generation curve, so 
that self-consumption is guaranteed. 

5. Conclusion 

the distributed flow of information inside the ANNs. We have 
shown that, with a small amount of information, the system is 
capable of establishing a plan of action to start controllable appli­
ances in a distributed way. 

In the execution of the neural controllers, we have shown that 
the tasks overlap in the time domain because of the distributed 
architecture of the scheduler. However, this problem was solved 
with a coordinator which splits the overlapped tasks. The evalua­
tion of the whole system was made taking into account that (i) 
the tasks cannot overlap, (ii) must be inside the user interval and 
(iii) should be near the forecasted maximum power value. This 
objective was accomplished in 85% of the evaluated cases. There­
fore we have shown that it is possible to use distributed algorithms 
to build ADSM systems, but also that the energy efficiency can be 
raised maximizing the self-consumption of the local energy. 

For a future perspective, we observe that ADSM techniques give 
the user the possibility to control his energy behavior because of 
the feedback information. This information is obtained through 
the constant monitoring of the energy flow of the electrical system. 
With this monitoring, the user could reduce the rates of energy 
consumption at home [27]. The benefits for the users are not only 
related to the understanding of its consumption behavior, but also 
they obtain economical benefits by not consuming energy from the 
grid. These techniques also benefit the grid, reducing the transpor­
tation losses and load shedding because of the self-consumption of 
local energy. Moreover, the use of these techniques will play an 
important role in the future smart-grids, helping to guarantee 
the energy supply and reducing the raw materials imports [28]. 

We have developed a control system using ANNs tuned by GAs 
to implement an ADSM system for the residential sector. Results 
show that ANNs are able to implement an ADSM system that meets 
the user requirements and schedules the tasks for the next day to 
improve the electrical local behavior. This concept is related to the 
idea of the self-consumption of the local energy. The implemented 
ADSM system, with a strategy of load shifting, maximizes the con­
sumption of PV generated energy increasing self-consumption. 

The ADSM system inherits the properties of the applied algo­
rithms. So that, the system is robust against failures because of 
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