603 research outputs found

    Independent, Reciprocal Neuromodulatory Control of Sweet and Bitter Taste Sensitivity during Starvation in Drosophila

    Get PDF
    An organism’s behavioral decisions often depend upon the relative strength of appetitive and aversive sensory stimuli, the relative sensitivity to which can be modified by internal states like hunger. However, whether sensitivity to such opposing influences is modulated in a unidirectional or bidirectional manner is not clear. Starved flies exhibit increased sugar and decreased bitter sensitivity. It is widely believed that only sugar sensitivity changes, and that this masks bitter sensitivity. Here we use gene- and circuit-level manipulations to show that sweet and bitter sensitivity are independently and reciprocally regulated by starvation in Drosophila. We identify orthogonal neuromodulatory cascades that oppositely control peripheral taste sensitivity for each modality. Moreover, these pathways are recruited at increasing hunger levels, such that low-risk changes (higher sugar sensitivity) precede high-risk changes (lower sensitivity to potentially toxic resources). In this way, state-intensity-dependent, reciprocal regulation of appetitive and aversive peripheral gustatory sensitivity permits flexible, adaptive feeding decisions

    New insights on Laminaria digitata ultrastructure through combined conventional chemical fixation and cryofixation

    Get PDF
    Acknowledgements The research leading to these results received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No .730984, ASSEMBLE Plus project, supporting access of CK and FCK to the Station Biologique de Roscoff. This work was conducted in conjunction with the European Marine Biological Resource Centre (EMBRC-ERIC), EMBRC-France. French state funds are managed by the ANR within the Investments of the Future program under reference ANR-10-INSB-02. Also, funding from the UK Natural Environment Research Council (NERC) through grants NE/D521522/1, NE/F012705/1, and Oceans 2025 (WP4.5) programs to FCK; the National Science Foundation (CHE-1664657) and the National Oceanic & Atmospheric Administration to CJC and FCK; and the MASTS pooling initiative (Marine Alliance for Science and Technology for Scotland, funded by the Scottish Funding Council and contributing institutions; grant reference HR09011) is gratefully acknowledged. Finally, we would like to acknowledge Susan Loiseaux-de GoĂ«r, Bernard Kloareg, Philippe Potin and Akira F. Peters for their hospitality and support to FCK and CK during their visit to RoscoffPeer reviewedPostprin

    Estimation of crop yields

    Get PDF
    This article does not have an abstract

    A large-scale yield survey on cotton

    Get PDF
    This article does not have an abstract

    SUMOylation of nuclear actin

    Get PDF
    Actin, a major component of the cytoplasm, is also abundant in the nucleus. Nuclear actin is involved in a variety of nuclear processes including transcription, chromatin remodeling, and intranuclear transport. Nevertheless, the regulation of nuclear actin by posttranslational modifications has not been investigated. We now show that nuclear actin is modified by SUMO2 and SUMO3 and that computational modeling and site-directed mutagenesis identified K68 and K284 as critical sites for SUMOylating actin. We also present a model for the actin–SUMO complex and show that SUMOylation is required for the nuclear localization of actin

    Puf6 primes 60S pre-ribosome nuclear export at low temperature

    Get PDF
    Productive ribosomal RNA (rRNA) compaction during ribosome assembly necessitates establishing correct tertiary contacts between distant secondary structure elements. Here, we quantify the response of the yeast proteome to low temperature (LT), a condition where aberrant mis-paired RNA folding intermediates accumulate. We show that, at LT, yeast cells globally boost production of their ribosome assembly machinery. We find that the LT-induced assembly factor, Puf6, binds to the nascent catalytic RNA-rich subunit interface within the 60S pre-ribosome, at a site that eventually loads the nuclear export apparatus. Ensemble Förster resonance energy transfer studies show that Puf6 mimics the role of Mg2+ to usher a unique long-range tertiary contact to compact rRNA. At LT, puf6 mutants accumulate 60S pre-ribosomes in the nucleus, thus unveiling Puf6-mediated rRNA compaction as a critical temperature-regulated rescue mechanism that counters rRNA misfolding to prime export competence.ISSN:2041-172
    • 

    corecore