400 research outputs found

    Raman scattering studies of order parameters in liquid crystalline dimers exhibiting the nematic and twist-bend nematic phases

    Get PDF
    Polarized Raman Spectroscopy (PRS) is used to quantify the orientational order in the conventional (N) and twist-bend (NTB) nematic phases of a homologous series of liquid crystalline dimers. The dimers investigated have 7, 8, 9 and 11 methylene groups connecting two cyanobiphenyl mesogens and data for 4-pentyl-4'-cyanobiphenyl (5CB) and 4-octyl-4'-cyanobiphenyl (8CB) are included for comparison. Simulated and measured Raman spectra for the materials are compared. PRS is used to determine both (P2) and (P4) order parameters across the nematic temperature range and immediately below the NTB–N phase transition using a model that takes into account the molecular bend of the odd dimers, which is described in detail. In the nematic phase, the odd dimers are found to exhibit rather low order parameters with hP2i taking values between 0.3 and 0.5 and (P4) about 0.25. In contrast, the even dimer shows extremely high values of the order parameters with (P2) taking values between 0.7 and 0.8 and (P4) between 0.4 and 0.45. For the odd dimers, the values of (P2) in the NTB phase are similar to those of the N phase, whereas (P4) jumps by approximately 5–10% and then decreases with temperature. On comparing the experimental data with the theoretical predictions, we find reasonable qualitative agreement for all materials with molecular field theory. The odd dimers, however, show higher (P4) values than obtained from theoretical models, a factor attributed to the neglect of molecular flexibility and biaxiality in the PRS analysis

    A flaring X-ray pulsar in Dorado

    Get PDF
    A study of unusual gamma-ray bursts detected on March 5 and March 6, 1979 in the KONUS experiment on the Venera 11 and Venera 12 spacecraft shows their source to be flaring X-ray pulsar in Dorado

    Preliminary results of a gamma-ray burst study in the Konus experiment on the Venera-11 and Venera-12 space probes

    Get PDF
    Twenty-one gamma-ray bursts and 68 solar flares in the hard X-ray range were detected on Venera-11 and Venera-12 space probes during the initial 50-day observation period. Major characteristics of the equipment used and preliminary data on the temporal structure and energy spectra of the gamma-ray bursts are considered. The pattern of gamma-ray burst frequency distribution vs. intensity, N(S), is established

    Molecular organization in the twist–bend nematic phase by resonant X-ray scattering at the Se K-edge and by SAXS, WAXS and GIXRD

    Get PDF
    Using a magnetically aligned liquid crystal mixture containing a novel Se-labelled dimer and the difluoroterphenyl dimer DTC5C7, the twist–bend nematic phase (Ntb) was studied by the resonant scattering of hard X-rays and by conventional small and wide-angle X-ray scattering (SAXS, WAXS). Resonant diffraction spots indicated a helix with a 9–12 nm pitch in the Ntb phase and an unprecedentedly high helix orientation. This enabled deconvolution of global and local order parameters. These findings, combined with the simultaneously recorded resonant and non-resonant SAXS and WAXS data, allowed us to construct a locally layered molecular model of the Ntb phase, where the average twisted conformation of each molecule was idealised as a helical segment, matching the local heliconical director field. The dimers were found to be less bent in the Ntb phase than in their minimum energy conformation, and straightening further with increasing temperature. It is proposed that on further heating their low bend angle allows the transition to the normal nematic phase, where the molecules can freely move longitudinally, without the need to perform screw-like motion as in the Ntb phase. At the low-temperature end, the increasing molecular twist becomes unsustainable, leading to a transition to a smectic phase, where no twist is required

    The Dependency of Nematic and Twist-bend Mesophase Formation on Bend Angle

    Get PDF
    We have prepared and studied a family of cyanobiphenyl dimers with varying linking groups with a view to exploring how molecular structure dictates the stability of the nematic and twist-bend nematic mesophases. Using molecular modelling and 1D (1)H NOESY NMR spectroscopy, we determine the angle between the two aromatic core units for each dimer and find a strong dependency of the stability of both the nematic and twist-bend mesophases upon this angle, thereby satisfying earlier theoretical models

    Reconnection Inside a Dipolarization Front of a Diverging Earthward Fast Flow

    Get PDF
    We examine a Dipolarization Front (DF) event with an embedded electron diffusion region (EDR), observed by the Magnetospheric Multiscale (MMS) spacecraft on 08 September 2018 at 14:51:30 UT in the Earth's magnetotail by applying multi-scale multipoint analysis methods. In order to study the large-scale context of this DF, we use conjunction observations of the Cluster spacecraft together with MMS. A polynomial magnetic field reconstruction technique is applied to MMS data to characterize the embedded electron current sheet including its velocity and the X-line exhaust opening angle. Our results show that the MMS and Cluster spacecraft were located in two counter-rotating vortex flows, and such flows may distort a flux tube in a way that the local magnetic shear angle is increased and localized magnetic reconnection may be triggered. Using multi-point data from MMS we further show that the local normalized reconnection rate is in the range of R ∼ 0.16 to 0.18. We find a highly asymmetric electron in- and outflow structure, consistent with previous simulations on strong guide-field reconnection events. This study shows that magnetic reconnection may not only take place at large-scale stable magnetopause or magnetotail current sheets but also in transient localized current sheets, produced as a consequence of the interaction between the fast Earthward flows and the Earth's dipole field

    Metabolic model for laboratory control of anti-ischaemic therapy effectiveness: a case study of nicorandil

    Get PDF
    Scientific relevance. A key anti-ischaemic mechanism of some medicinal products involves their effects on the metabolism of endothelial vasodilators, particularly the synthesis of nitric oxide from arginine and its precursor citrulline.Aim. The study was aimed to determine whether the plasma time course of guanidine derivatives (arginine precursors) is applicable to laboratory control of anti-ischaemic therapy effectiveness using a single oral dose of nicorandil in patients with coronary heart disease as a case study.Materials and methods. The authors used high-performance liquid chromatography to determine metabolites. Blood samples for analysis were obtained from 30 patients with angina pectoris (Grade II–III, Canadian Cardiovascular Society) and 30 healthy donors. All the study participants received a single oral dose of 20 mg nicorandil after 10 h of fasting.Results. At baseline, patients showed significantly higher plasma citrulline levels than donors. However, the elevated levels decreased to the healthy range after nicorandil administration. Plasma arginine levels in patients showed a statistically significant increase following nicorandil administration. Plasma homoarginine levels in patients remained reduced both before and after dosing. Nicorandil did not influence elevated levels of the endogenous nitric oxide synthase inhibitor (asymmetrical dimethylarginine).Conclusions. In addition to the established mechanisms responsible for altering cell metabolism, nicorandil enhances the contribution of citrulline to arginine resynthesis. It is reasonable to include citrulline and arginine, which are involved in the vasodilator response, in model schemes for laboratory control of the effectiveness of anti-ischaemic therapy

    Secluded Dark Matter Coupled to a Hidden CFT

    Full text link
    Models of secluded dark matter offer a variant on the standard WIMP picture and can modify our expectations for hidden sector phenomenology and detection. In this work we extend a minimal model of secluded dark matter, comprised of a U(1)'-charged dark matter candidate, to include a confining hidden-sector CFT. This provides a technically natural explanation for the hierarchically small mediator-scale, with hidden-sector confinement generating m_{gamma'}>0. Furthermore, the thermal history of the universe can differ markedly from the WIMP picture due to (i) new annihilation channels, (ii) a (potentially) large number of hidden-sector degrees of freedom, and (iii) a hidden-sector phase transition at temperatures T << M_{dm} after freeze out. The mediator allows both the dark matter and the Standard Model to communicate with the CFT, thus modifying the low-energy phenomenology and cosmic-ray signals from the secluded sector.Comment: ~50p, 8 figs; v2 JHEP versio

    Have Superheavy Elements been Produced in Nature?

    Full text link
    We discuss the possibility whether superheavy elements can be produced in Nature by the astrophysical rapid neutron capture process. To this end we have performed fully dynamical network r-process calculations assuming an environment with neutron-to-seed ratio large enough to produce superheavy nuclei. Our calculations include two sets of nuclear masses and fission barriers and include all possible fission channels and the associated fission yield distributions. Our calculations produce superheavy nuclei with A ~ 300 that however decay on timescales of days.Comment: 12 pages, 11 figure

    Multidimensional Conservation Laws: Overview, Problems, and Perspective

    Full text link
    Some of recent important developments are overviewed, several longstanding open problems are discussed, and a perspective is presented for the mathematical theory of multidimensional conservation laws. Some basic features and phenomena of multidimensional hyperbolic conservation laws are revealed, and some samples of multidimensional systems/models and related important problems are presented and analyzed with emphasis on the prototypes that have been solved or may be expected to be solved rigorously at least for some cases. In particular, multidimensional steady supersonic problems and transonic problems, shock reflection-diffraction problems, and related effective nonlinear approaches are analyzed. A theory of divergence-measure vector fields and related analytical frameworks for the analysis of entropy solutions are discussed.Comment: 43 pages, 3 figure
    • …
    corecore