63 research outputs found

    Metabolic Syndrome as the First Stage of Eldership; the Beginning of Real Aging

    Get PDF
    The history of active worldwide scientific research on mechanisms of aging and the age-associated diseases counts more than five decades. Of these, among the numerous theories of aging, at least 50 years dominated the free radical theory of aging. Since mitochondria were found to be the major producers of free radicals, the research on aging became largely centered on mitochondria. At the end of 80s of the 20th century, physicians have established a new nosological entity named “Metabolic syndrome” comprising several simultaneously existing symptoms and risk factors, which increase with age to 47% in men and 64% for women. The diagnosis of metabolic syndrome (MetS) requires simultaneous presence of at least three out of five medical conditions: visceral obesity, hypertension, high blood sugar, insulin resistance, low serum high-density lipoprotein accompanied with high serum triglycerides. However, from the beginning of the definition of MetS there was, and still is, a rather lovely debate, which of the symptoms must be considered as the main one. In spite of the enormous number of publications on both mechanisms of aging and MetS, there was relatively small progress in understanding the fundamental processes in these closely related problems. On the contrary, the mitochondrial free radical theory was found to be wrong in its current paradigms. In this Chapter we will discuss recent discoveries and hypotheses which open new perspectives in both theoretical and practical approaches to the problems of aging and MetS. We will show how aging and development of MetS are closely related to each other and the normal ontogenesis of human beings. Why men and women have different rates of aging and mechanisms of transition to MetS. We state that MetS is not just a cluster of symptoms, but one of the last steps of individual ontogenesis, namely the first step of eldership when the aging rate may increase manifold

    Chiral light in twisted Fabry-P\'erot cavities

    Full text link
    Fundamental studies of the interaction of chiral light with chiral matter are important for the development of techniques that allow handedness-selective optical detection of chiral organic molecules. One approach to achieve this goal is the creation of a Fabry-P\'erot cavity that supports eigenmodes with a desired electromagnetic handedness, which interacts differently with left and right molecular enantiomers. In this paper, we theoretically study chiral Fabry-P\'erot cavities with mirrors comprising one-dimensional photonic crystal slabs made of van der Waals As2_2S3_3, a material with one of the highest known in-plane anisotropy. By utilizing the anisotropy degree of freedom provided by As2_2S3_3, we design Fabry-P\'erot cavities with constitutional and configurational geometrical chiralities. We demonstrate that in cavities with constitutional chirality, electromagnetic modes of left or right handedness exist due to the chirality of both mirrors, often referred to as handedness preserving mirrors in the literature. At the same time, cavities with configurational chirality support modes of both handednesses due to chiral morphology of the entire structure, set by the twist angle between the optical axes of the upper and lower non-chiral anisotropic mirrors. The developed chiral Fabry-P\'erot cavities can be tuned to the technologically available distance between the mirrors by properly twisting them, making such systems a prospective platform for the coupling of chiral light with chiral matter.Comment: 33 pages, 9 figure

    The Calculation of the Spatial Distribution of Temperature Fields for Remote Monitoring of the Surface From an Unmanned Aerial Vehicle

    Get PDF
    В статье рассматривается расчет пространственного распределения температурных полей на поверхности и вглубь грунта. Представлена общая постановка задачи расчета пространственного распределения температурных полей в переменно-насыщенных пористых средах. Приведены результаты реализации предложенного способа расчета в ходе натурного экспериментаThe article deals with the calculation of the spatial distribution of temperature fields on the surface and deep into the soil. Presents a general formulation of the problem of calculating the spatial distribution of temperature fields in variably-saturated porous media. The results of the proposed method of calculation in the field experimen

    Ultrasonic predictors of macrosomia in gestational diabetes mellitus

    Get PDF
    BACKGROUND: The basis of early ultrasound (US) diagnosis of diabetic fetopathy (DF) in pregnant with gestational diabetes mellitus (GDM) is the forehanded detection of macrosomia, especially its asymmetric forms. In pregnant with GDM on a diet therapy, the detection of macrosomia may be an indication for starting the insulin therapy. In pregnant with hyperglycemia due to mutation in the glucokinase gene (GCK), US fetal growth dynamics helps to assume the fetal genotype, as well as to stratify the risks of insulin therapy. AIM: To determine the prognostic significance of asymmetric form of macrosomia and the value of the coefficients of proportionality for the diagnosis of DF in pregnant with GDM, including hyperglycemia due to mutation in the GCK gene. MATERIALS AND METHODS: US fetometry was performed in 95 pregnant with GDM (including 22 pregnant with hyperglycemia caused by mutation in the GCK gene) (main group) and 427 healthy pregnant women (control group). Estimated fetal weight, standard fetometric indicators and coefficients of proportionality were evaluated. Retrospective analysis of US predictors of macrosomia was carried out after evaluating the weight of the newborn and clarifying the signs of DF. RESULTS: In the group with GDM, 51 (53.7%) pregnant had children with phenotypic symptoms of DF, including macrosomia – 66,7% (34 children). We found statistically significant differences in fetal weight between the control group and the main group who gave birth to children with DF starting from 32 weeks. The coefficients of proportionality (femur length/abdominal circumference and the head circumference/abdominal circumference), characterizing the formation of the asymmetric macrosomia were significantly from 34 weeks (Р<0,05). CONCLUSION: The most effective predictive fetometric indicators for the diagnosis of fetal macrosomia are the dimensions of fetal abdomen and fetal weight > 90 percentile for gestational age. A specific sign of DF in pregnant with GDM is the asymmetric macrosomia. In pregnant with a mutation in the GCK gene, the tendency to macrosomia was revealed only in the absence of a mutation in the fetus, but insulin therapy in the presence of a similar mutation in fetus did not lead to a significant decrease in its percentile ranges

    Alignment of the CMS silicon tracker during commissioning with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS silicon tracker, consisting of 1440 silicon pixel and 15 148 silicon strip detector modules, has been aligned using more than three million cosmic ray charged particles, with additional information from optical surveys. The positions of the modules were determined with respect to cosmic ray trajectories to an average precision of 3–4 microns RMS in the barrel and 3–14 microns RMS in the endcap in the most sensitive coordinate. The results have been validated by several studies, including laser beam cross-checks, track fit self-consistency, track residuals in overlapping module regions, and track parameter resolution, and are compared with predictions obtained from simulation. Correlated systematic effects have been investigated. The track parameter resolutions obtained with this alignment are close to the design performance.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Commissioning and performance of the CMS pixel tracker with cosmic ray muons

    Get PDF
    This is the Pre-print version of the Article. The official published verion of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe pixel detector of the Compact Muon Solenoid experiment consists of three barrel layers and two disks for each endcap. The detector was installed in summer 2008, commissioned with charge injections, and operated in the 3.8 T magnetic field during cosmic ray data taking. This paper reports on the first running experience and presents results on the pixel tracker performance, which are found to be in line with the design specifications of this detector. The transverse impact parameter resolution measured in a sample of high momentum muons is 18 microns.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS drift-tube chamber local trigger with cosmic rays

    Get PDF
    The performance of the Local Trigger based on the drift-tube system of the CMS experiment has been studied using muons from cosmic ray events collected during the commissioning of the detector in 2008. The properties of the system are extensively tested and compared with the simulation. The effect of the random arrival time of the cosmic rays on the trigger performance is reported, and the results are compared with the design expectations for proton-proton collisions and with previous measurements obtained with muon beams

    Performance of the CMS Level-1 trigger during commissioning with cosmic ray muons and LHC beams

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPThe CMS Level-1 trigger was used to select cosmic ray muons and LHC beam events during data-taking runs in 2008, and to estimate the level of detector noise. This paper describes the trigger components used, the algorithms that were executed, and the trigger synchronisation. Using data from extended cosmic ray runs, the muon, electron/photon, and jet triggers have been validated, and their performance evaluated. Efficiencies were found to be high, resolutions were found to be good, and rates as expected.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Performance of the CMS hadron calorimeter with cosmic ray muons and LHC beam data

    Get PDF
    This is the Pre-print version of the Article. The official published version of the Paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)
    corecore