207 research outputs found

    LASP SmallSat Science Data Services

    Get PDF
    We are developing of a set of turn-key science data services for smallsat data management, processing, and hosting. Using cloud computing resources and existing infrastructure, we can rapidly deploy a modular data system for a mission or project. A basic system includes reliable, secure data storage, an API for fast data access worldwide, and a lightweight website with information about the mission and data API documentation. Optional add-ons include the ability to deploy science processing software using Docker containers, interactive web-based data displays, and archive deliveries to NASA or other archive facilities. The use of AWS CloudFormation templates to build new systems makes deployment and support straightforward and cost-efficient, and provides a consistent interface for both mission teams and science data users

    Genetic dissection of the pluripotent proteome through multi-omics data integration.

    Get PDF
    Genetic background drives phenotypic variability in pluripotent stem cells (PSCs). Most studies to date have used transcript abundance as the primary molecular readout of cell state in PSCs. We performed a comprehensive proteogenomics analysis of 190 genetically diverse mouse embryonic stem cell (mESC) lines. The quantitative proteome is highly variable across lines, and we identified pluripotency-associated pathways that were differentially activated in the proteomics data that were not evident in transcriptome data from the same lines. Integration of protein abundance to transcript levels and chromatin accessibility revealed broad co-variation across molecular layers as well as shared and unique drivers of quantitative variation in pluripotency-associated pathways. Quantitative trait locus (QTL) mapping localized the drivers of these multi-omic signatures to genomic hotspots. This study reveals post-transcriptional mechanisms and genetic interactions that underlie quantitative variability in the pluripotent proteome and provides a regulatory map for mESCs that can provide a basis for future mechanistic studies

    Dependence of Hippocampal Function on ERRĪ³-Regulated Mitochondrial Metabolism

    Get PDF
    SummaryNeurons utilize mitochondrial oxidative phosphorylation (OxPhos) to generate energy essential for survival, function, and behavioral output. Unlike most cells that burn both fat and sugar, neurons only burn sugar. Despite its importance, how neurons meet the increased energy demands of complex behaviors such as learning and memory is poorly understood. Here we show that the estrogen-related receptor gamma (ERRĪ³) orchestrates the expression of a distinct neural gene network promoting mitochondrial oxidative metabolism that reflects the extraordinary neuronal dependence on glucose. ERRĪ³āˆ’/āˆ’ neurons exhibit decreased metabolic capacity. Impairment of long-term potentiation (LTP) in ERRĪ³āˆ’/āˆ’ hippocampal slices can be fully rescued by the mitochondrial OxPhos substrate pyruvate, functionally linking the ERRĪ³ knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERRĪ³ in cerebral cortex and hippocampus exhibit defects in spatial learning and memory. These findings implicate neuronal ERRĪ³ in the metabolic adaptations required for memory formation

    Three-Year Trajectory of Teachersā€™ Fidelity to a Drug Prevention Curriculum

    Get PDF
    Little is known about the trajectories over time of classroom teachersā€™ fidelity to drug prevention curricula. Using the ā€œConcerns-Based Adoption Modelā€ (C-BAM) as a theoretical framework, we hypothesized that teachersā€™ fidelity would improve with repetition. Participants comprised 23 middle school teachers who videotaped their administration of three entire iterations of the All Stars curriculum. Investigators coded two key curriculum lessons, specifically assessing the proportion of activities of each lesson teachers attempted and whether they omitted, added, or changed prescribed content, or delivered it using new methods. Study findings provided only partial support for the C-BAM model. Considerable variability in teachersā€™ performance over time was noted, suggesting that their progression over time may be nonlinear and dynamic, and quite possibly a function of their classroom and school contexts. There was also evidence that, by their third iteration of All Stars, teachers tended to regress toward the baseline mean. That is, the implementation quality of those that started out with high levels of fidelity tended to degrade, while those that started out with very low fidelity to the curriculum tended to improve. Study findings suggest the need for ongoing training and technical assistance, as well as ā€œjust in timeā€ messages delivered electronically; but it is also possible that some prevention curricula may impose unrealistic expectations or burdens on teachersā€™ abilities and classroom time

    Transethnic insight into the genetics of glycaemic traits: fine-mapping results from the Population Architecture using Genomics and Epidemiology (PAGE) consortium

    Get PDF
    AIMS/HYPOTHESIS: Elevated levels of fasting glucose and fasting insulin in non-diabetic individuals are markers of dysregulation of glucose metabolism and are strong risk factors for type 2 diabetes. Genome-wide association studies have discovered over 50 SNPs associated with these traits. Most of these loci were discovered in European populations and have not been tested in a well-powered multi-ethnic study. We hypothesised that a large, ancestrally diverse, fine-mapping genetic study of glycaemic traits would identify novel and population-specific associations that were previously undetectable by European-centric studies. METHODS: A multiethnic study of up to 26,760 unrelated individuals without diabetes, of predominantly Hispanic/Latino and African ancestries, were genotyped using the Metabochip. Transethnic meta-analysis of racial/ethnic-specific linear regression analyses were performed for fasting glucose and fasting insulin. We attempted to replicate 39 fasting glucose and 17 fasting insulin loci. Genetic fine-mapping was performed through sequential conditional analyses in 15 regions that included both the initially reported SNP association(s) and denser coverage of SNP markers. In addition, Metabochip-wide analyses were performed to discover novel fasting glucose and fasting insulin loci. The most significant SNP associations were further examined using bioinformatic functional annotation. RESULTS: Previously reported SNP associations were significantly replicated (pĀ ā‰¤Ā 0.05) in 31/39 fasting glucose loci and 14/17 fasting insulin loci. Eleven glycaemic trait loci were refined to a smaller list of potentially causal variants through transethnic meta-analysis. Stepwise conditional analysis identified two loci with independent secondary signals (G6PC2-rs477224 and GCK-rs2908290), which had not previously been reported. Population-specific conditional analyses identified an independent signal in G6PC2 tagged by the rare variant rs77719485 in African ancestry. Further Metabochip-wide analysis uncovered one novel fasting insulin locus at SLC17A2-rs75862513. CONCLUSIONS/INTERPRETATION: These findings suggest that while glycaemic trait loci often have generalisable effects across the studied populations, transethnic genetic studies help to prioritise likely functional SNPs, identify novel associations that may be population-specific and in turn have the potential to influence screening efforts or therapeutic discoveries. DATA AVAILABILITY: The summary statistics from each of the ancestry-specific and transethnic (combined ancestry) results can be found under the PAGE study on dbGaP here: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000356.v1.p1

    A comprehensive evaluation of interaction between genetic variants and use of menopausal hormone therapy on mammographic density.

    Get PDF
    INTRODUCTION: Mammographic density is an established breast cancer risk factor with a strong genetic component and can be increased in women using menopausal hormone therapy (MHT). Here, we aimed to identify genetic variants that may modify the association between MHT use and mammographic density. METHODS: The study comprised 6,298 postmenopausal women from the Mayo Mammography Health Study and nine studies included in the Breast Cancer Association Consortium. We selected for evaluation 1327 single nucleotide polymorphisms (SNPs) showing the lowest P-values for interaction (P int) in a meta-analysis of genome-wide gene-environment interaction studies with MHT use on risk of breast cancer, 2541 SNPs in candidate genes (AKR1C4, CYP1A1-CYP1A2, CYP1B1, ESR2, PPARG, PRL, SULT1A1-SULT1A2 and TNF) and ten SNPs (AREG-rs10034692, PRDM6-rs186749, ESR1-rs12665607, ZNF365-rs10995190, 8p11.23-rs7816345, LSP1-rs3817198, IGF1-rs703556, 12q24-rs1265507, TMEM184B-rs7289126, and SGSM3-rs17001868) associated with mammographic density in genome-wide studies. We used multiple linear regression models adjusted for potential confounders to evaluate interactions between SNPs and current use of MHT on mammographic density. RESULTS: No significant interactions were identified after adjustment for multiple testing. The strongest SNP-MHT interaction (unadjusted P int <0.0004) was observed with rs9358531 6.5kb 5' of PRL. Furthermore, three SNPs in PLCG2 that had previously been shown to modify the association of MHT use with breast cancer risk were found to modify also the association of MHT use with mammographic density (unadjusted P int <0.002), but solely among cases (unadjusted P int SNPƗMHTƗcase-status <0.02). CONCLUSIONS: The study identified potential interactions on mammographic density between current use of MHT and SNPs near PRL and in PLCG2, which require confirmation. Given the moderate size of the interactions observed, larger studies are needed to identify genetic modifiers of the association of MHT use with mammographic density.This is the final version of the article. It first appeared from BioMed Central via http://dx.doi.org/10.1186/s13058-015-0625-

    Combining quantitative and qualitative breast density measures to assess breast cancer risk

    Get PDF
    Abstract Background Accurately identifying women with dense breasts (Breast Imaging Reporting and Data System [BI-RADS] heterogeneously or extremely dense) who are at high breast cancer risk will facilitate discussions of supplemental imaging and primary prevention. We examined the independent contribution of dense breast volume and BI-RADS breast density to predict invasive breast cancer and whether dense breast volume combined with Breast Cancer Surveillance Consortium (BCSC) risk model factors (age, race/ethnicity, family history of breast cancer, history of breast biopsy, and BI-RADS breast density) improves identifying women with dense breasts at high breast cancer risk. Methods We conducted a case-control study of 1720 women with invasive cancer and 3686 control subjects. We calculated ORs and 95% CIs for the effect of BI-RADS breast density and Volparaā„¢ automated dense breast volume on invasive cancer risk, adjusting for other BCSC risk model factors plus body mass index (BMI), and we compared C-statistics between models. We calculated BCSC 5-year breast cancer risk, incorporating the adjusted ORs associated with dense breast volume. Results Compared with women with BI-RADS scattered fibroglandular densities and second-quartile dense breast volume, women with BI-RADS extremely dense breasts and third- or fourth-quartile dense breast volume (75% of women with extremely dense breasts) had high breast cancer risk (OR 2.87, 95% CI 1.84ā€“4.47, and OR 2.56, 95% CI 1.87ā€“3.52, respectively), whereas women with extremely dense breasts and first- or second-quartile dense breast volume were not at significantly increased breast cancer risk (OR 1.53, 95% CI 0.75ā€“3.09, and OR 1.50, 95% CI 0.82ā€“2.73, respectively). Adding continuous dense breast volume to a model with BCSC risk model factors and BMI increased discriminatory accuracy compared with a model with only BCSC risk model factors (C-statistic 0.639, 95% CI 0.623ā€“0.654, vs. C-statistic 0.614, 95% CI 0.598ā€“0.630, respectively; Pā€‰<ā€‰0.001). Women with dense breasts and fourth-quartile dense breast volume had a BCSC 5-year risk of 2.5%, whereas women with dense breasts and first-quartile dense breast volume had a 5-year riskā€‰ā‰¤ā€‰1.8%. Conclusions Risk models with automated dense breast volume combined with BI-RADS breast density may better identify women with dense breasts at high breast cancer risk than risk models with either measure alone

    LRRTM3 Interacts with APP and BACE1 and Has Variants Associating with Late-Onset Alzheimer's Disease (LOAD)

    Get PDF
    Leucine rich repeat transmembrane protein 3 (LRRTM3) is member of a synaptic protein family. LRRTM3 is a nested gene within Ī±-T catenin (CTNNA3) and resides at the linkage peak for late-onset Alzheimerā€™s disease (LOAD) risk and plasma amyloid Ī² (AĪ²) levels. In-vitro knock-down of LRRTM3 was previously shown to decrease secreted AĪ², although the mechanism of this is unclear. In SH-SY5Y cells overexpressing APP and transiently transfected with LRRTM3 alone or with BACE1, we showed that LRRTM3 co-localizes with both APP and BACE1 in early endosomes, where BACE1 processing of APP occurs. Additionally, LRRTM3 co-localizes with APP in primary neuronal cultures from Tg2576 mice transduced with LRRTM3-expressing adeno-associated virus. Moreover, LRRTM3 co-immunoprecipitates with both endogenous APP and overexpressed BACE1, in HEK293T cells transfected with LRRTM3. SH-SY5Y cells with knock-down of LRRTM3 had lower BACE1 and higher CTNNA3 mRNA levels, but no change in APP. Brain mRNA levels of LRRTM3 showed significant correlations with BACE1, CTNNA3 and APP in āˆ¼400 humans, but not in LRRTM3 knock-out mice. Finally, we assessed 69 single nucleotide polymorphisms (SNPs) within and flanking LRRTM3 in 1,567 LOADs and 2,082 controls and identified 8 SNPs within a linkage disequilibrium block encompassing 5ā€²UTR-Intron 1 of LRRTM3 that formed multilocus genotypes (MLG) with suggestive global association with LOAD risk (pā€Š=ā€Š0.06), and significant individual MLGs. These 8 SNPs were genotyped in an independent series (1,258 LOADs and 718 controls) and had significant global and individual MLG associations in the combined dataset (pā€Š=ā€Š0.02ā€“0.05). Collectively, these results suggest that protein interactions between LRRTM3, APP and BACE1, as well as complex associations between mRNA levels of LRRTM3, CTNNA3, APP and BACE1 in humans might influence APP metabolism and ultimately risk of AD.Ā© 2013 Lincoln et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited
    • ā€¦
    corecore